[建筑]主要型式盾构技术介绍.doc_第1页
[建筑]主要型式盾构技术介绍.doc_第2页
[建筑]主要型式盾构技术介绍.doc_第3页
[建筑]主要型式盾构技术介绍.doc_第4页
[建筑]主要型式盾构技术介绍.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

主要型式盾构技术介绍主要型式盾构技术介绍 第一节 土压平衡式盾构机技术 土压平衡式盾构机的发展基于挤压式盾构机(闭胸)和泥水式盾构机。它一般通过控制其排土量等于开挖量即可使开挖面的地层始终保持稳定。适用于城市地下隧道的施工。它具有地面沉降易于控制,对周围环境影响较小等显著的优点。 土压平衡盾构可根据不同的地质条件采取不同的技术措施,设计成不同的类型,能适应从松软粘性土到砂砾土层范围内各种土层施工。 图3-1-1 土压平衡盾构简图 1、普通型土压平衡盾构 普通型土压平衡盾构见图3-1-1,适用于松软粘性土,由刀盘切削下的泥土进入泥土舱,再通过螺旋输送机向后排出。由于泥土经过刀盘切削和扰动后会增加塑流性,在受到刀盘切削和螺旋输送机传送后也会变得更为松软,使泥土舱内的土压能均匀传递。通过调节螺旋机转速或调节盾构推进速度,调节密封泥土舱内的土压并使其接近开挖面静止土压,保持开挖面土层的稳定。 普通型土压平衡盾构一般采用面板式刀盘,进土槽口宽在200500mm 左右,刀盘开口率约为20%40%,另外在螺旋输送机排土口装有排土闸门,有利于控制泥土舱内土压和控制排土量。 2、加泥型土压平衡盾构 当泥土含砂量超过一定限度时,土砂激动性差,靠刀盘切削扰动难以使泥土达到足够的塑流状态,有时会压密固结,产生拱效应。当地下水量丰富时,通过螺旋输送机的泥土,就不能起到止水作用,无法进行施工。此时应在普通型土压平衡盾构的基础上增加特殊泥浆压注系统,即形成加泥型土压平衡盾构(图3-1-2)。向刀盘面板、泥土舱和螺旋输送机内注入特殊粘土泥浆材料,再通过刀盘开挖搅拌作用,使之与开挖下来的泥土混合,使其转变为流动性好、不透水性泥土,符合土压平衡盾构施工要求。 图3-1-2 加泥型土压平衡盾构简图 为了降低刀盘传动功率和减小泥土移动阻力,加泥型土压平衡盾构刀盘为有幅条的开放式结构,开口面积接近100%,并在刀盘背面伸出若干搅拌土砂的叶片,以便对土砂进行强力搅拌,使其变成具有塑流性和不透水性的泥土。 另外,对要求注入浓度、粘性更高的泥浆材料才能改变土砂功能时,往往难以用刀盘搅拌达到目的,这将大大增加刀盘和螺旋输送机的机械负荷,造成盾构施工困难。此时应注入发泡剂代替泥浆材料,因为发泡剂材料比重小、搅拌负荷轻,可使刀盘扭矩降低50% 左右。盾构排出土砂中的泡沫会随时间自然消失,有时在泥土中加入消泡剂,可加速泡沫的消失,保持良好的作业环境。 3、加水型土压平衡盾构 在砂层、砂砾层透水性较大的土层中,还可以采用加水型土压平衡盾构。这种盾构是在普通型土压平衡盾构基础上,在螺旋输送机的排土口接上一个排土调整箱(图3-1-3),在排土调整箱中注人压力水,并使其与开挖面土层地下水压保持平衡。经过螺旋输送机将弃土排入调整箱内与压力水混合后形成泥浆,再通过管道向地面排送。开挖面的土压仍由密封泥土舱土压进行平衡。 图3-1-3 加水型土压平衡盾构简图盾构掘进时,刀盘不停地对土层进行开挖和搅拌,使密封泥土舱内的土砂处于均匀状态;土砂颗粒之间的空隙被水填满,减少了土砂颗粒之间有效应力而增加了流动性,从而能顺畅地通过螺旋输送机送入排土调整箱。在调整箱内通过搅拌混合,向地面处理场排放。 加水型土压平衡盾构的泥水排放系统与泥水加压盾构相似,但注入的主要是清水,无粘粒材料,无需对注入的水进行浓度、比重控制,泥水分离处理设备和工艺也大为简化。这种盾构刀盘一般采用面板式结构,进土槽口尺寸可根据土体中砾石最大尺寸来决定,刀盘开口率一般在20%60%左右。4、泥浆型土压平衡盾构 这种盾构适用于土质松软、透水性好、易于崩塌的积水砂砾层或覆土较浅、泥水易喷出地面和易产生地表变形的极差地层的施工。图3-1-4 是其施工工艺流程图,它具有土压平衡盾构和泥水加压盾构的双重特征。盾构掘进时,应向盾构内注入高浓度泥浆,通过搅拌与土砂混合使其泥土化,并充满泥土舱,支护开挖面。由于从螺旋输送机排出的泥土呈塑化或流化状态,所以在螺旋输送机的排土口装上一个旋转排土器既可保持泥土舱内土压的稳定,又可不断地从压力区向无压区顺利排出。但从排土器排出的泥土呈泥浆状,不能用干土排送方式向地面排送,同时泥浆浓度较高,无法通过管道排出,从螺旋输送机徘出的泥土,是在泥浆槽中经水稀释后再以流体形式通过管道排往地面。 图3-1-4 泥浆型土压平衡盾构工艺流程简图 从图中可以看出,泥浆型土压平衡盾构泥土舱的泥浆供入系统和排出系统是两个回路,所以从泥浆排出系统操作所造成的压力波动,对泥土舱内支护压力无大影响,使盾构操作控制更为简便。该机通常采用面板结构,进土槽口宽度可按土层中最大砾石尺寸决定,刀盘开口率一般在40%60%左右。由于泥浆型土压平衡盾构多用于巨砾土层,因此排土多采用带式螺旋机,可比同样大小中心轴式螺旋输送机排出的石块粒径大一倍左右。 第二节 泥水加压式盾构机技术 泥水加压盾构是应用封闭型平衡原理进行开挖的新型盾构:用泥浆代替气压支护开挖面土层,施工质量好、效率高、技术先进、安全可靠,是一种全新的盾构技术。但由于泥水加压盾构,需要一套较复杂的泥水处理设备,投资较大(大概就占了整个泥水盾构系统的三分之一的费用);施工占地面积较大,在城市市区施工,有一定困难,然而在某些特定条件下的工程,如在大量含水砂砾层,无粘聚力、极不稳定土层和覆土浅的工程,以及超大直径盾构和对地面变形要求特别高的地区施工,泥水加压盾构就能显示其优越性。另外对某些施工场地较宽敞,有丰富的水源和较好泥浆排放条件或泥浆仅需进行沉淀处理排放的工程,可大幅度降低施工费用。1、 基本构造和工作原理 1.1、 基本构造 图3-2-5 所示为泥水加压盾构的基本构造简图。主要由盾壳、刀盘、密封泥水舱、盾构干斤项、管片拼装机以及盾尾密封装置等组成。概括地说,泥水加压盾构是在盾构前部增设一道密封隔舱板,把盾构开挖面与盾构后面和隧道空间截然分开,使密封隔舱板与开挖面土层之间形成密封泥水舱,在泥水舱内充以压力泥浆,刀盘浸没在泥水舱中工作,由刀盘开挖下的泥土进入泥水舱后,经刀盘切削搅拌和搅拌机搅拌后形成稠泥浆,通过管道排送到地面,排出的泥浆作分离处理,排除土碴,对余下的浆液进行粘度、比重调整,重新送入盾构密封泥水舱循环使用。 图3-2-5 泥水加压盾构构造简图 1.2、工作原理 泥水加压盾构是利用向密封泥水舱中输入压力泥浆来支护开挖面土层,使盾构施工在开挖面土层十分稳定的条件下向前掘进,从而大大地提高了隧道施工质量和施工效率。泥浆的主要功用为: 利用泥浆静压力平衡开挖面土层水土压; 在开挖面土层表面,形成一层不透水泥膜,使泥浆压力发挥有效的支护作用; 泥浆中细微粘粒在极短时间内渗入土层一定深度,进一步改善土层承压能力。 输入盾构的泥浆必须具有适当的粘度和比重,泥浆压力要保持高于土层地下水压0.02 MPa 左右。 2、机械特征 泥水加压盾构的主要机械构造与其它盾构相似,这里仅就刀盘部分加以叙述。 泥水加压盾构刀盘主要用于开掘土层,同时也起泥浆搅拌作用,当盾构停止掘进时, 刀盘亦对开挖面土层进行支护,因而泥水加压盾构的刀盘多采用面板式结构。对在松软、不稳定、易流性土层中开挖,还应设置进土槽口关闭装置,当盾构较长时间停止工作时, 不仅通过压力泥浆支护开挖面,而且要关闭进土格口,以防让泥土流入。 为了更好的控制开挖面土层稳定,有时把盾构刀盘设计成可轴向移动,当盾构向前推进时,随着开挖面土压的变化,刀盘可单独与盾构相对自由轴向移动,而且刀架与刀盘相互联动,对进土槽口开度大小进行自动调节,以调节控制进土量,亦即调节控制开挖面土压,当开挖面土压与刀盘设定推力相吻合时,刀盘就会停止移动。这种盾构叫做机械平衡泥水加压盾构。这种盾构施工时,只要调节好输入泥浆压力与土层地下水压的平衡,刀盘始终保持与土层贴合,就能对开挖面进行稳定支护,施工也就更为安全可靠。 3、泥水系统 泥水分离设备目前在国内尚无成套成熟的生产技术,近年宜昌黑旋风机械厂生产的泥水分离设备可以分离粒径大于74m 的颗粒,主要对砂土进行分离,对粘土的分离则较困难,而世界著名的厂商如德国SUMANBAURG 生产的设备则可分离粒径30m 以上的颗粒,这对进度的控制非常关键。 根据泥水密封舱构造形式和对泥浆压力的控制方式不同,盾构的泥水系统,分为两种基本类型 。 3.1、直接控制型 压力传感器流量计泥浆调整槽电动机密度计V 压力控制槽P2 流量计送往处理场P1 密度计 图3-2-6 直接控制型泥水系统流程图 图3-2-6 是直接控制型(日本型)泥水系统流程图,P1 为供泥浆泵,从地面泥浆调整槽将新鲜泥浆打入盾构泥水舱,与开挖下的泥土进行混合,形成稠泥浆,然后由排泥浆泵P 2 输送到地面泥水处理场,排除土渣,而稀泥浆流向调整槽,再对泥浆比重和浓度进行调整后重新输入盾构循环使用。 控制泥水舱中泥浆压力,可通过调节P1 泵转速或调节控制阀V 的开度来进行。P1 泵安在地面,控制距离长而产生延迟效应不便于控制泥浆压力,因此常用调节控制阀V 来进行泥浆压力调节。 由于泥水加压盾构开挖面工况不能直接观察,为了保证施工质量,在进排泥浆管路上分别安装流量计和密度计,通过检测泥浆的流量和密度,即可算出盾构的排土量,然后将排土量与理论掘进排土量进行比较,并使实际排土量控制在一定范围内,就可减小和避免地面变形,保证隧道施工质量。 3.2、间接控制型 送往处理场泥浆调整槽密度计流量计电动机液位计空气缓冲层液位传感器流量计密度计排泥浆泵调解阀 图3-2-7 间接控制型泥水系统流程图 图3-2-7 所示为间接控制型(德国型)泥水系统流程图,这种系统的工作特征是由泥浆和空气双重回路组成。在盾构密封泥水舱内插装一道半隔板,在半隔板前充以压力泥浆,在半隔板后面盾构轴心线以上部分充以压缩空气,形成空气缓冲层,气压作用在隔板后面与浆接触面上,由于接触面上气、液具有相同压力,因此只要调节空气压力,就可以确定和保持在全开挖面上相应的泥浆支护压力。当盾构掘进时,有时由于泥浆的流失,或推进速度的变化,进、排泥浆量将会失去平衡,气液接触面就会出现上下波动现象。通过液位传感器,根据液位的高低变化来操纵供泥浆泵转速,使液位恢复到设定位置,以保持开挖面支护液压的稳定。也就是说,供泥浆泵输出量随液位下降而增加,随液位上升而减小, 另外在液位最高和最低处设有限位器,当液位达到最高位时,停止供泥浆泵,当液位降低到最低位时,则停止排泥浆泵。正是由于空气缓冲层的弹性作用,从而当液位波动时,对支护泥浆压力变化无明显影响。显然,间接控制型泥水加压盾构与直接控制型相比,操作控制更为简化,对开挖面土层支护更为稳定,对地表变形控制也更为有利。 第三节 复合式盾构机技术 采用盾构法掘进长距离隧道,会遇到复杂多变的地质条件,往往用一种类型的盾构难以完成施工任务,因此出现了复合型盾构。 所谓复合型盾构,就是在软土盾构的刀盘上安装切削岩层的各式刀具,有的还在盾构内安装碎石机,这种硬岩开挖工具与软土隧道盾相机械相结合,能在硬岩和软土地层交替作业。复合型盾构刀盘上安装的刀具,应根据不同岩层条件而定。 软土地层:主要采用割刀,安装在刀盘进土槽口两侧; 1.2、 硬岩地层:主要采用盘式滚刀,对于更坚硬的地层,应安装牙轮形和镶嵌碳化钨珠形的滚轮刀; 软硬混合交替夹层:应采用不同形式的刮刀取代滚刀(如撕裂刀),其开挖方法是刮下块状石块,使其对软塑土层更有效地开挖。 上述各种刀具,应能相互调换,以便随岩层的变化进行有效选择。 复合型盾构主要有以下三种类型: 泥水加压型复合盾构 以泥水加压盾构为基型,与硬岩开挖技术相结合,对大块卵石、块石应在盾构内安装碎石机。当盾构在软土层施工时,可按封闭型泥水加压盾构进行施工;当遇

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论