




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章 第七节 一、方向导数 机动 目录 上页 下页 返回 结束 二、梯度 三、物理意义 方向导数与梯度 一、方向导数 定义: 若函数 则称为函数在点 P 处沿方向 l 的方向导数. 在点 处 沿方向 l (方向角为 ) 存在下列极限: 机动 目录 上页 下页 返回 结束 记作 定理: 则函数在该点沿任意方向 l 的方向导数存在 , 证明: 由函数 且有 在点 P 可微 , 得 机动 目录 上页 下页 返回 结束 故 机动 目录 上页 下页 返回 结束 对于二元函数 为, ) 的方向导数为 特别: 当 l 与 x 轴同向 当 l 与 x 轴反向 向角 例1. 求函数 在点 P(1, 1, 1) 沿向量 3) 的方向导数 . 机动 目录 上页 下页 返回 结束 解: 向量 l 的方向余弦为 例2. 求函数 在点P(2, 3)沿曲线 朝 x 增大方向的方向导数. 解:将已知曲线用参数方程表示为 它在点 P 的切向量为 机动 目录 上页 下页 返回 结束 例3. 设是曲面 在点 P(1, 1, 1 )处 指向外侧的法向量, 解: 方向余弦为 而 同理得 方向的方向导数. 在点P 处沿求函数 机动 目录 上页 下页 返回 结束 二、梯度 方向导数公式 令向量 这说明 方向:f 变化率最大的方向 模 : f 的最大变化率之值 方向导数取最大值: 机动 目录 上页 下页 返回 结束 1. 定义 即 同样可定义二元函数 称为函数 f (P) 在点 P 处的梯度 记作 (gradient), 在点处的梯度 机动 目录 上页 下页 返回 结束 说明: 函数的方向导数为梯度在该方向上的投影. 向量 2. 梯度的几何意义 函数在一点的梯度垂直于该点等值面(或等值线) , 机动 目录 上页 下页 返回 结束 称为函数 f 的等值线 . 则L*上点P 处的法向量为 同样, 对应函数 有等值面(等量面) 当各偏导数不同时为零时, 其上 点P处的法向量为 指向函数增大的方向. 3. 梯度的基本运算公式 机动 目录 上页 下页 返回 结束 例4. 证: 试证 机动 目录 上页 下页 返回 结束 处矢径 r 的模 , 三、物理意义 函数 (物理量的分布) 数量场 (数性函数) 场 向量场(矢性函数) 可微函数梯度场 ( 势 ) 如: 温度场, 电位场等 如: 力场,速度场等 (向量场) 注意: 任意一个向量场不一定是梯度场. 机动 目录 上页 下页 返回 结束 例5. 已知位于坐标原点的点电荷 q 在任意点 试证 证: 利用例4的结果 这说明场强: 处所产生的电位为 垂直于等位面, 且指向电位减少的方向. 机动 目录 上页 下页 返回 结束 内容小结 1. 方向导数 三元函数 在点沿方向 l (方向角 的方向导数为 二元函数 在点 的方向导数为 沿方向 l (方向角为 机动 目录 上页 下页 返回 结束 2. 梯度 三元函数 在点 处的梯度为 二元函数 在点处的梯度为 3. 关系 方向导数存在偏导数存在 可微 机动 目录 上页 下页 返回 结束 梯度在方向 l 上的投影. 思考与练习 1. 设函数 (1) 求函数在点 M ( 1, 1, 1 ) 处沿曲线 在该点切线方向的方向导数; (2) 求函数在 M( 1, 1, 1 ) 处的梯度与(1)中切线方向 的夹角 . 2. P131 题 16 机动 目录 上页 下页 返回 结束 曲线 1. (1) 在点 解答提示: 机动 目录 上页 下页 返回 结束 函数沿 l 的方向导数 M (1,1,1) 处切线的方向向量 机动 目录 上页 下页 返回 结束 2. P131 题 16 备用题 1. 函数 在点 处的梯度 解: 则 注意 x , y , z 具有轮换对称性 (92考研) 机动 目录 上页 下页 返回 结束 指
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古鄂尔多斯生态环境职业学院专业技术人员招聘18人考前自测高频考点模拟试题含答案详解
- 2025河南新乡市牧野区世青学校招聘考前自测高频考点模拟试题及答案详解(名校卷)
- 2025贵州遵义市赤水市第一批就业见习招募34人模拟试卷及答案详解(网校专用)
- 2025江西南昌市东方航空配餐有限公司招聘劳务派遣人员1人模拟试卷及答案详解(名师系列)
- 2025河南郑州市第六人民医院招聘考前自测高频考点模拟试题及答案详解(全优)
- 2025年山东职业学院公开招聘人员(28名)模拟试卷及答案详解(必刷)
- 2025黑龙江五大连池风景区宣传和统一战线工作部招聘1名公益性岗位1人考前自测高频考点模拟试题(含答案详解)
- 2025福建三明市大田县住房和城乡建设局(房地产服务中心)补招聘工作人员(政府购买服务)1人模拟试卷及答案详解(有一套)
- 2025年牡丹江市高校毕业生留牡来牡就业创业专项行动工作的模拟试卷(含答案详解)
- 2025年上海新型烟草制品研究院有限公司所属企业招聘2人(第一批次)笔试题库历年考点版附带答案详解
- 2025年安全员b证考试安徽省题库及答案解析
- 首台套申报培训课件
- GB/T 14193.1-2025液化气体气瓶充装规定第1部分:工业气瓶
- 保安安检培训课件
- 2025年肝素行业研究报告及未来行业发展趋势预测
- 2025年脚手架租赁合同3篇
- 医院工作纪律培训课件
- 轻质燃料油安全技术说明书样本
- 小米全屋智能方案
- 杏仁粉营养分析报告
- 《多边形的面积》大单元教学设计
评论
0/150
提交评论