




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、隐函数的导数 定义: 隐函数的显化 问题:隐函数不易显化或不能显化如何求导? 隐函数求导法则: 用复合函数求导法则直接对方程两边求导. 例1 解 解得 例2 解 所求切线方程为 显然通过原点. 例3 解 二、对数求导法 观察函数 方法: 先在方程两边取对数, 然后利用隐函数的求导 方法求出导数. -对数求导法 适用范围: 例4 解等式两边取对数得 例5 解等式两边取对数得 一般地 三、由参数方程所确定的函数的导数 例如 消去参数 问题: 消参困难或无法消参如何求导? 由复合函数及反函数的求导法则得 例6 解 所求切线方程为 例7 解 例8 解 四、相关变化率 相关变化率问题: 已知其中一个变化率时如何求出另一个变化率? 例9 解 仰角增加率 例10 解 水面上升之速率 4000m 五、小结 隐函数求导法则: 直接对方程两边求导; 对数求导法: 对方程两边取对数,按隐函数的求导 法则求导; 参数方程求导: 实质上是利用复合函数求导法则; 相关变化率: 通过函数关系确定两个相互依赖的 变化率; 解法: 通过建立两者之间的关系, 用链 式求导法求解.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脑动脉瘤合并介入护理查房
- 2025本溪市第一中学面向高等院校应届毕业生校园招聘教师考前自测高频考点模拟试题及答案详解参考
- 2025北京大学高分子化学与物理教育部重点实验室主任招聘考前自测高频考点模拟试题及参考答案详解一套
- 贵州国企招聘2025锦屏县粮食购销公司招聘工作人员笔试历年参考题库附带答案详解
- 浙江国企招聘2025宁波甬山控股集团有限公司公开招聘面谈笔试历年参考题库附带答案详解
- 2025重庆石柱土家族自治县广播电视台第二次招聘临时人员4人笔试历年参考题库附带答案详解
- 2025重庆市地质矿产勘查开发集团有限公司招聘17人笔试历年参考题库附带答案详解
- 2025贵州黔东南州凯里瑞禾农业投资(集团)有限责任公司招聘4人笔试历年参考题库附带答案详解
- 2025贵州贵阳机场股份公司飞机地勤分公司招聘8人笔试历年参考题库附带答案详解
- 2025福建漳州市古雷港经济开发区城市巡防应急服务有限公司招聘12人笔试历年参考题库附带答案详解
- 2025秋人教鄂教版(2024)科学一年级第一单元走近科学《1“钓鱼”游戏》 教学设计
- 2026届高考物理一轮复习策略讲座
- 食品腐烂变质安全培训课件
- 隧道施工车辆安全培训课件
- 《西方管理思想史》课件
- 纽伦堡审判国际法
- 2024年中国东方航空集团招聘笔试参考题库含答案解析
- 妇产科国家临床重点专科验收汇报
- 2023国际功能、残疾和健康分类康复组合(ICF-RS)评定标准
- 《现代企业管理》全套课件
- 设备保管协议书
评论
0/150
提交评论