ANSYS非线性屈曲分析例子命令流.ppt_第1页
ANSYS非线性屈曲分析例子命令流.ppt_第2页
ANSYS非线性屈曲分析例子命令流.ppt_第3页
ANSYS非线性屈曲分析例子命令流.ppt_第4页
ANSYS非线性屈曲分析例子命令流.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Buckling is the failure of columns and rods when under a compressive load. The rod/column/beam bends before the load reaches the materials yield point. Buckling occurs due to the structures imperfections. Beams Rods Columns Crankshafts Piston and Cylinders Synthetic bones and prosthetics. Any mechanism that undergoes compression Finite Element Analysis allows the Solution of buckling problems. The Column is divided into different nodes and a small preload is added. ANSYS offers 2 buckling modes, Eigenvalue (Linear) and a non-linear solution method. For this solution method, ANSYS uses the linear Eigenvalue method to solve for the buckling load. The Following is a command prompt used to run the Eigenvalue method on ANSYS. ANSYS can also produce non-linear results. This is done by using sub-stepped loads, to calculate the strains and getting a new Youngs Modulus with the given strain. An initial deformation is placed in the model, so that ANSYS may bend the model and simulate buckling (otherwise the load would show only compressive results). The next is a command prompt to input in ANSYS to produce the analysis. It is important to understand what the NLGEOM command does, and how it does it. This command allows ANSYS to engage in a non-linear elastic modeling of the beam. The first Equation is the Plastic strain equation: Where the super script “pl” represents the plastic strain, and “el” represents the linear strain, and n is the original strain. To calculate the linear strain the following equation is used: In the previous equation Represents the equivalent total strain measure and is calculated using the following equation: As can be seen in the equation, as the number of iterations are increased, the magnitude of the plastic deformation decreases (in a new iteration, the results for the plastic strain is used as the initial strain). The rate of the decrease also decreases with an increasing number of iterations, until the answer for the strain converges. This however does not take into account Non-linear Young modulus, and more complicated methods must be used in order to compute the stress-strain of a model with a non-linear Youngs modulus. ANSYS produces Favorable results for buckling Analysis. The non-linear Buckling analysis tends to give

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论