已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题课 级数的收敛、求和与展开 机动 目录 上页 下页 返回 结束 三、幂级数和函数的求法 四、函数的幂级数和付式级数 展开法 一、数项级数的审敛法 二、求幂级数收敛域的方法 第十一章 求和 展开 (在收敛域内进行) 基本问题:判别敛散;求收敛域; 求和函数;级数展开. 为傅立叶级数.为傅氏系数) 时 , 时为数项级数; 时为幂级数; 机动 目录 上页 下页 返回 结束 一、数项级数的审敛法 1. 利用部分和数列的极限判别级数的敛散性 2. 正项级数审敛法 必要条件 不满足 发 散 满足 比值审敛法 根值审敛法 收 敛发 散 不定 比较审敛法 用它法判别 积分判别法 部分和极限 机动 目录 上页 下页 返回 结束 3. 任意项级数审敛法 为收敛级数 Leibniz判别法: 若 且 则交错级数收敛 , 概念: 且余项 若收敛 , 称 绝对收敛 若发散 , 称条件收敛 机动 目录 上页 下页 返回 结束 例1. 若级数 均收敛 , 且 证明级数收敛 . 证: 则由题设 收敛收敛 收敛 练习题: P257 1 ; 2 ; 3 ; 4 ; 5 机动 目录 上页 下页 返回 结束 解答提示: P257 题2. 判别下列级数的敛散性: 提示: (1) 据比较判别法, 原级数发散 .因调和级数发散, 机动 目录 上页 下页 返回 结束 利用比值判别法, 可知原级数发散. 用比值法, 可判断级数 因 n 充分大时 原级数发散 . 用比值判别法可知: 时收敛 ; 时, 与 p 级数比较可知 时收敛; 时发散. 再由比较法可知原级数收敛 . 时发散 . 发散, 收敛, 机动 目录 上页 下页 返回 结束 P257 题3. 设正项级数 和 也收敛 . 提示: 因 存在 N 0, 又因 利用收敛级数的性质及比较判敛法易知结论正确. 都收敛, 证明级数 当n N 时 机动 目录 上页 下页 返回 结束 P257 题4. 设级数收敛 , 且 是否也收敛?说明理由. 但对任意项级数却不一定收敛 . 问级数 提示: 对正项级数,由比较判别法可知 级数收敛 , 收敛, 级数发散 . 例如, 取 机动 目录 上页 下页 返回 结束 P257 题5.讨论下列级数的绝对收敛性与条件收敛性: 提示: (1) P 1 时, 绝对收敛 ; 0 p 1 时, 条件收敛 ; p0 时, 发散 . (2) 因各项取绝对值后所得强级数 原级数绝对收敛 . 故 机动 目录 上页 下页 返回 结束 因单调递减, 且 但 所以原级数仅条件收敛 . 由Leibniz判别法知级数收敛 ; 机动 目录 上页 下页 返回 结束 因 所以原级数绝对收敛 . 机动 目录 上页 下页 返回 结束 二、求幂级数收敛域的方法 标准形式幂级数: 先求收敛半径 R , 再讨论 非标准形式幂级数 通过换元转化为标准形式 直接用比值法或根值法 处的敛散性 . P257 题7. 求下列级数的敛散区间: 练习: 机动 目录 上页 下页 返回 结束 解: 当 因此级数在端点发散 , 时, 时原级数收敛 . 故收敛区间为 机动 目录 上页 下页 返回 结束 解: 因 故收敛区间为 级数收敛; 一般项不趋于0, 级数发散; 机动 目录 上页 下页 返回 结束 例2. 解: 分别考虑偶次幂与奇次幂组成的级数 极限不存在 原级数 = 其收敛半径 注意: 机动 目录 上页 下页 返回 结束 求部分和式极限 三、幂级数和函数的求法 求和 映射变换法 逐项求导或求积分 对和式积分或求导 难 直接求和: 直接变换, 间接求和: 转化成幂级数求和, 再代值 求部分和等 初等变换法: 分解、套用公式 (在收敛区间内) 数项级数 求和 机动 目录 上页 下页 返回 结束 例3. 求幂级数 法1 易求出级数的收敛域为 机动 目录 上页 下页 返回 结束 法2先求出收敛区间则设和函数为 机动 目录 上页 下页 返回 结束 练习: 解: (1) 显然 x = 0 时上式也正确, 故和函数为 而在 x0 P258 题8. 求下列幂级数的和函数: 级数发散, 机动 目录 上页 下页 返回 结束 (4) 机动 目录 上页 下页 返回 结束 显然 x = 0 时, 和为 0 ; 根据和函数的连续性 , 有 x = 1 时, 级数也收敛 . 即得 机动 目录 上页 下页 返回 结束 练习: 解: 原式= 的和 .P258 题9(2). 求级数 机动 目录 上页 下页 返回 结束 四、函数的幂级数和付式级数展开法 直接展开法 间接展开法 练习: 1. 将函数展开成 x 的幂级数. 利用已知展式的函数及幂级数性质 利用泰勒公式 解: 机动 目录 上页 下页 返回 结束 1. 函数的幂级数展开法 2. 设 , 将 f (x)展开成 x 的幂级数 ,的和. ( 01考研 ) 解: 于是 并求级数 机动 目录 上页 下页 返回 结束 机动 目录 上页 下页 返回 结束 2. 函数的付式级数展开法 系数公式及计算技巧; 收敛定理; 延拓方法 练习: 上的表达式为 将其展为傅氏级数 . P258 题11. 设 f (x)是周期为2的函数, 它在 解答提示 机动 目录 上页 下页 返回 结束 思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贷款担保合作协议范本
- 2026年湖南生物机电职业技术学院单招职业技能测试必刷测试卷附答案
- 2026年三门峡职业技术学院单招职业倾向性测试必刷测试卷及答案1套
- 2026年云南省临沧地区单招职业适应性考试必刷测试卷及答案1套
- 2026年云南商务职业学院单招综合素质考试必刷测试卷及答案1套
- 2026年开封职业学院单招综合素质考试题库新版
- 2026年青海省海东地区单招职业适应性考试题库新版
- 2026年湖南电气职业技术学院单招职业倾向性测试题库必考题
- 2026年重庆青年职业技术学院单招职业倾向性考试题库新版
- 2026年重庆信息技术职业学院单招综合素质考试题库及答案1套
- 围墙粉刷施工方案(3篇)
- 2025山东泰山财产保险股份有限公司总公司及分支机构校园招聘、社会招聘笔试备考试题及答案解析
- 数控技术专业介绍
- 2025至2030中国黑龙江省养老机构行业产业运行态势及投资规划深度研究报告
- “华能工匠杯”电力市场交易技能竞赛考试题库(附答案)
- 吸引力法则培训课件
- 做课件教学的步骤
- 2025年饮料gmp试题及答案
- 低碳景观设计策略-洞察及研究
- 局工作秘密管理暂行办法
- 《“1+X”无人机摄影测量》课件-项目三 像控点采集
评论
0/150
提交评论