




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
工程质量监理 徐慧智 第二章 数理统计基础及应用 第一节 数理统计基本知识 一、总体、个体和样本 在一个统计问题中,称研究对象的全体为总体(有限总体和无限总体)。构成总体的 每个成员或每个研究对象称为个体(样本、样本容量、样品)。 有限总体(母体) 工序是无限总体 样本1 样本2 样本3 样本1容量为17 样本2容量为18 样本2容量为17 个体(样品) 说明:样本容量 越大,结果越能 反映总体的特性 ,但是耗费的代 价越大,成本越 高,当样本容量 和总体中个体含 量相同时,是一 种极限情况 二、数据质量 质量数据是反映某种质量特性指标的原始数据。狭义的质量数据主要是产品质量相关 的数据,如不良品数、合格率、直通率、返修率等。广义的质量数据指能反映各 项工作质量的数据,如一批沥青的针入度、含蜡量、延度等。 工程质量监理工作依据应为“一切以数据说话”。 1、质量数据的分类 1)计量值数据 计量值数据是可以连续取值的数据,属于连续型变量。它通常由测量 得到,如重量、强度、几何尺寸、标高、位移等。 2)计数值数据 计数值数据是只能按0,1,2,数列取值计数的数据,属于离散 型变量。它一般由计数得到。计数值数据又可分为计件值数据和计点值数据。 2、质量数据的特性 1)波动性,即在相同的生产技术条件下生产出来的一批产品,其质量特性数据由于 受到操作者、设备、材料、方法、环境等多种因素的影响而总存在着一定的差异 ; 2)规律性,即当生产过程处于正常状态时,其质量数据的波动是有一定规律的 。 1、数据的来源 材料检验 工序检验 竣工检验 中间检验 2、数据的来源 产品质量说明文件 监理中心实验室 工地实验室 流动实验室 承办人提供 监理工程师抽查 预测和控制工程质量 3、数据的修约 数据获得之后,对规定精确度之外的数据,如何取舍的问题,在统计学中的修约规则 如下: 1)拟舍去的数字中,其最左边的第一位数据小于5时,则舍去,留下的数字不变 2)拟舍去的数字中,其最左边的第一位数据大于5时,则进1,即留下的数字末位加1 3)拟舍去的数字中,其最左边的第一位数据等于5时,后面的数据并非全部为0时, 所留数字的末位加1 4)拟舍去的数字中,其最左边的第一位数据等于5时,后面无数据或者全部为0时, 所留数字的末位数字为奇数(1、3、5、7、9)则进1,所留数字的末位数字为偶 数(2、4、6、8)则舍去 18.2432-18.2 例子: 26.4843-26.5 1.0501-1.1 0.05-0.0 0.15-0.2 0.25-0.2 上述数值修约规则(奇升偶降法)与以 往惯用的四舍五入法相比较,四舍五入 方法取得的数据偏大,而奇升偶降法对 于数据的取舍具有平衡性,大量数据进 行这种修约之后,修约值变大还是变小 的可能性几乎是一样的。 三、数据的统计特征量 用来表示统计数据分布及其某些特性的特征量分为两类:一类表示数据的集中位置, 例如算术平均值、中位数等;一类表示数据的离散程度,主要有极差、标准离差 、变异系数等。 1算术平均值 算术平均值是表示一组数据集中位置最有用的统计特征量,经常 用样本的算术平均值来代表总体的平均水平。总体的算术平均值用户表示,样本 的算术平均值则用x表示。 2中位数 在一组数据x1、x2、xn中,按其大小次序排序,以排在正中间的一 个数表示总体的平均水平,称之为中位数,或称中值,用x- 表示。n为奇数时,正 中间的数只有一个;n为偶数时,正中间的数有两个,则取这两个数的平均值作为 中位数。 3.极差 在一组数据中最大值与最小值之差,称为极差,极差没有充分利用数据的信 息,但计算十分简单,仅适用于样本容量较小(n10)的 情况。 4.标准偏差 标准偏差有时也称标准离差、标准差或称均方差,它是衡量样本数据波 动性(离散程度)的指标占在质量检验中,总体的标准偏差 一般不易求得。 5变异系数 标准偏差是反映样本数据的绝对波动状况,当测量较大的量值时,绝 对误差一般较大;而测量较小的量值时,绝对误差一般较小,因此,用相对波动 的大小,即变异系数更能反映样本数据的波动性。 各 类 代 表 性 的 数 量 特 征 值 代表值是多少 代表性有多大 代表性可靠吗 集中趋势的度量 离散趋势的度量 分布特征的度量 平均指标 变异指标 偏度峰度指标 基本 公式 简单 式 加权 式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 公式公式公式 算术平均数 调和平均数 几何平均数 中位数 众数 极差 平均差 标准差 变异系数 原点矩 中心距 N阶矩 1算术平均值 2中位数 3、极差 4、样本标准偏差 5、变异系数 例子:某段沥青混凝 土面层抗磨性能检测 (摩擦系数) 58 56 60 53 48 54 50 61 57 55 正常干燥沥青路面的摩擦系数为0.6,雨天路面摩擦系数降为0.4,雪天则为0.28,结冰路面就更低,只有0.18 P36页例题 四、数据的分布特征 质量数据具有一定的规律性,这种规律采用概率分布描述。公路工程质量控制和评价 中,经常采用正态分布和 t 分布。 1、正态分布 概率密度函数 当一定时,曲线随着U 的变化而沿x轴平移; 当一定时,曲线的形状由确定, 越小 ,曲线越“瘦高”,表示总体的分布越集中; 越大,曲线越“矮胖”,表示总体的分布越分散。 随机变量平均值 标准偏差 正态分布曲线具有如下特点: 1)正态分布曲线对成语x=u,及以平均值为中心; 2)当x=u,曲线处于最高点,当x向左和向右移动时,曲线不断降低,整个曲线呈现中 间高、两边底的形状; 3)曲线与横坐标轴围成的面积等于1,即 当=0,=1时,正态分布乘坐标准正态分布,概率密度为: 对于正态分布N(, ),它的测量值落入区间(a,b)的概率,用P(a3 =0.27%i=1,2,n ,也就是说400次观测数据才有1次出现可疑数据。表达公式 为: 此外,当观测值与平均值之间的误差大于2倍标准差时,该测量数据应该保留,但需 存疑。 该准则可以重复应用,直至所保留数据中已不含粗大误差为止。该准则比较保守,因为 在测量次数有限时,出现在靠近3界限处的数据较少,除非有较大的粗大误差, 否则依据准则而导致数据被剔除的可能性很小。 当样本数量小于10时,该准则不能剔除任何异常值。也就是说,测量次数少于10次时, 不能用该准则。使用条件为检测次数大于50。 2、肖维纳特(Chavenet)法 肖维纳特准则也是以正态分布为前提的。在观测次数较少时,肖维纳特准则犯“弃真”错 误的概率是较大的,例如,n=5时,犯“弃真”错误的概率可达20。在n185时,肖维纳 特准则比3准则严格;当n185时,肖维纳特准则比3准则宽松;当n时,肖维 纳特准则就无法应用了。可疑数据的舍弃准则为: 3、格拉布斯法 格拉布斯法准则是在确认测得值,也就是随机误差服从正态分布的前提下,利用格拉布 斯法统计量来判别异常值是否为可疑值的准则。 设对某一固定量作等精度的多次独立测量,得到一测量列:x1,x2,xn。当测得值xi( i1,2,n)服从正态分布时,求得 把测量列按大小顺序重新排列成顺序统计量为x(1)x()x (n)。其中左右 两端边缘测得值最可能含有粗大误差。根据顺序统计原理,格罗贝斯给出了统计量 取舍的条件: 显著性水平 格拉布斯法 利用格罗贝斯准则每次只能剔除一个可疑值,需重复进行判别,直到无粗大误差的测得 值为止。格罗贝斯准则克服了3准则的缺陷,在概率意义上给出了较为严谨的结 果,被认为是比较好的判断准则。 例子: 实验室进行同配比的混凝土测试实验,其检测结果为(n=10):23.0、24.5、26.0、 25.0、24.8、27.0、25.5、31.0、25.4、25.8(MPa),分别采用拉依达法、肖维 纳特(Chavenet)法、格拉布斯法判别取舍: 解:10个测量数据, 1、拉依达法 观测数据均不能舍去。 2、肖维纳特(Chavenet)法 最大值应该舍去,最小值保留。 该种方法和拉依达法对数据的取舍结果有所不同。 GB/T50081-2002,制作边长为 150mm的立方体在标准养护(温度202 、相对湿度在95%以上)条件下,养护至 28d龄期,用标准试验方法测得的极限抗 压强度,称为混凝土标准立方体抗压强度 。 按照GB50010-2010混凝土结构设 计规范规定,普通混凝土划分为十四个 等级,即:C15,C20,C25,C30,C35 ,C40,C45,C50,C55,C60,C65, C70,C75,C80。例如,强度等级为C30 的混凝土是指30MPafcu,k1.67过高 21.67 CP 1.33充分 31.33 CP 1.00理想 41.00CP0.67不足 5 0.67CP非常不足 3)判断质量分布状态 中部有一顶峰,左右两边低,近似 对称。这时可判断工序运行正常处 于稳定状态。 是由于直方图分组过多或 是测量数据不准等原因造 成。 这是由于测量工具有误差或是原材料一 时的变化 刀具严重磨损 短时间内不 熟练工人替岗、操作疏忽、混入规范不 同的产品等造成。 直方图出现两个顶峰 这是由于数据 来自不同的总体。比如 把来自两个 工人或两批原材料或两种设备生产的 产品混在一起造成。 偏向型又分左偏型和右 偏型。一些有形位公差 要求的特性值分布,往 住呈偏向型孔加工习惯 ,造成的特性值分布, 常呈左偏型。而轴加工 习惯造成的特性值分布 常呈右偏型。 绝壁型常常由于操作人员的主观因素 造成的,一般多是因为数据收集不正 常,或是在工序检测过程中出现了人 为干扰。 4)判断施工能力 B表示实际质量特性值分布范围 T表示质量标准要求的界限 二、控制图法 控制图又叫管理图,它是一种带控制界限的质量管理图表。运用控制图的目的之一就 是,通过观察控制图上产品质量特性值的分布状况,分析和判断生产过程是否发 生了异常,一旦发现异常就要及时采取必要的措施加以消除,使生产过程恢复稳 定状态。也可以应用控制图来使生产过程达到统计控制的状态。产品质量特性值 的分布是一种统计分布因此,绘制控制图需要应用概率论的相关理论和知识。 是由美国贝尔实验室的休哈特博士于1924年提出来的。 1、控制图的基本原理 1)质量的波动性 在施工过程中,工程质量的波动不可避免。它是由人、设备、材料、工艺方法、环境 等几个因素综合作用的结果。波动分为正常波动和异常波动两种。 正常波动是偶然因素造成的,其出现带有随机性质的特点,如原材料成分和性能发生 微小变化,工人操作的微小变化,周围环境的微小变化等,这类的质量波动是不 可避免的,不需要采取措施进行控制。一般情况下,质量波动服从正态分布。 异常波动是系统原因造成的,对质量的影响很大。如原材料质量的变化,工人不遵守 操作规程,机械设备的调整不当,检验仪器的使用不合理,周围环境发生变化等 等。此类的质量波动是可以避免的,质量的异常波动在生产中是不容许出现的, 需要采取措施进行控制。 2)控制图的原理 设所考察的产品的质量特征,在生产过程处于控制状态时,服从正态分布N(,2),则 样本大小为n的样本平均数 服从N(,2/n)。因此对塣 控制图,若以数学期望 为 中线值,以为上、下控制界限,则适当选择k值,可以保证当过程处于控制状态时, 样本平均数 以很高的概率位于上下控制界限之间,而且应呈随机排列。例如当k=3 时,此概率为99.7%。如果某个样本点落到控制界限之外,就认为生产过程失去控 制;这种情况虽然在生产过程处于控制状态时也有可能发生,但其概率只有0.3%,可 能性很小。 分布概率图 -3 +3 中心线CL 控制上限UCL 控制下限LCL UCL= +3S CL= LCL= -3S 三个界限的计算公式: 3)控制图预防原则的贯彻 一是对过程不断监控;二是落实“查出异因,采取措施、保证消除、不在出现、纳入标 准”等二十字方针; 4)控制图的种类及控制界限的计算 图名称步 骤中心线计算公式备 注 图 (1)计算各样本平均值 (2)计算各样本极差Ri xij第I样本中的第j个数据i1,2k; j=1,2n; max(xij)第i样本中最大值; min(xij)第i样本中最大值。 图 (1)找出或计算出各样本 的中位数 (2)计算各样本极差Ri n为奇数时,第i样本中按大 小顺序排列起的数据列中间位置的数 据 n为偶数时,第I样 本 中按大小顺序排列起的 数据列中中间位置的两个数据的平均 值 LS图 (1)找出各组最大值Li和 最小值Si (2)计算最大值平均值 和最小值平均值 (3)计算平均极差 (4)计算范围中值M XRs图计算移动极差Rsi Pn图 计算平均不合格品率(pn)i第i样本的不合格品数 (各样本样本容量皆为n) P 图 计算各组不合格品率pini第i样本的样本容量(各样 本样本容量可以不等) C图 计算各样本的平均缺陷数ci第i样本的缺陷数(各样本 样本容量相等) U图 计算各样本的单位缺陷数ui各样本样本容量不等 控制图图名称样样 本 数 k样样 本 容 量 n备备 注 图图 图图 LS图图 一般k=2025一般36 图图的样样本容量常取3或5 XRs图图K=20301 pn图图、 p 图图 一般k2025 1/p5/p C图图、U图图 尽可能使样样本中缺陷 数C15 样样本大小 R 图图 用X 图图 用LS图图用 A2D3D4M3A2E2A9 21.880-2.2671.8802.6602.695 31.023-2.5751.1871.7721.826 40.729-2.2820.7961.4571.522 50.577-2.1150.6911.2901.363 60.483-2.0040.5491.1841.263 70.4190.0761.9240.5091.1091.914 80.3730.1361.8640.4321.0541.143 90.3370.1841.8160.4121.0101.104 100.3080.2231.7770.3630.9751.072 控制图系数表 例子:绘制基层厚度检测结果的 控制图。 日期组号实测偏差平均值极差 x1x2x3x4x5 5/312-0.5-1-0.163.0 6/3201.7-11- 7/33-111-0.511.50.302.0 8/341-1000002.0 9/35110.51.5-13.00.602.5 10/3612-10.524.50.903.0 11/3720.52 12/3822.50.51171.42.0 13/392-11.511.551.003.0 14/31000.5001.510.202.0 合计295.824.2 基层厚度检测结果与计算表格 (1)各组的平均值、极差分别为:(2)计算控制界限: 样本号 CL2.42 CL0.58 UCL1.98 LCL-0.82 UCL5.11 R图 0 2 4 6 8 10 x图 基层厚度检测质量控制图 3、控制图的应用 发生异常的几种情况: 1个点落在控制线以外; 连续9个点落在中心线同一侧; 连续6个点递增或者递减 连续14个点中临近两个点交替上下; 3个点中有2个点落在中心线一侧偏大范围内 连续5个点中有4个落在中心线偏大范围内; 连续15个点位于中心线一侧靠近偏小范围 连续8个点落在中心线两侧且均在偏大范围内 三、相关图法 相关图法又叫散布图法、简易相关分析法。它是通过运用相关图研究两个质量特性之间 的相关关系,来控制影响产品质量中相关因素的一种有效的常用方法。相关图是把 两个变量之间的相关关系,用直角坐标系表示的图表,它根据影响质量特性因素的 各对数据,用小点表示填列在直角坐标图上,并观察它们之间的关系。 不相关不相关 负线性相关负线性相关 正线性相关正线性相关 非线性相关非线性相关 完全负线性相关完全负线性相关 完全正线性相关完全正线性相关 三、相关图法 回归分析: 研究一个随机变量Y对另一个(X)或一组(X1,X2,Xk)变量的相依关系的统计分析方 法。 例子:不同灰水比(C/W)的混凝土28d强度(R28)的实验结果,确定灰水比和混凝土 28d强度之间的回归方程及其相关系数。 一个自变量两个及两个以上自变量 回归模型 多元回归一元回归 线性回归非线性回归线性回归非线性回归 C/WR28 1.2514.3 1.5018.0 1.7522.8 2.0026.7 2.2530.3 2.5034.1 第三节 抽样检测基础 一、抽样检测的内容 抽样检验又称抽样检查,是从一批产品中随机抽取少量产品(样本) 进行检验,据以 判断该批产品是否合格的统计方法和理论。它与全面检验不同之处,在于后者需 对整批产
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电动密集柜行业研究报告及未来行业发展趋势预测
- 2025年短视频APP行业研究报告及未来行业发展趋势预测
- 2025年半导体测试设备行业研究报告及未来行业发展趋势预测
- 2025年OTA旅游度假行业研究报告及未来行业发展趋势预测
- 2025年自动驾驶卡车在物流园区内的自动驾驶车辆管理报告
- 新能源行业安全管理现状分析及2025年创新技术融合报告
- 网络理财产品推广策划方案
- Z世代消费趋势观察:2025年新消费品牌品牌战略规划报告
- 企业财务内审问题及整改报告样本
- 高考地理专题复习试题汇编解析
- 单孔腹腔镜课程讲义课件
- 优秀初中语文说课课件
- 人教精通版六年级上英语Lesson15教学课件
- 人工血管动静脉内瘘术后护理课件
- 普通逻辑ppt课件(完整版)
- GB∕T 16762-2020 一般用途钢丝绳吊索特性和技术条件
- 《小学语文课程与教学论》复习题
- DB32∕T 4065-2021 建筑幕墙工程技术标准
- 施工现场环保工作措施
- 资产清查服务方案模版
- 检具设计PPT.
评论
0/150
提交评论