已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目录 上页 下页 返回 结束 第三节 一、三重积分的概念 二、三重积分的计算 三重积分 第十章 目录 上页 下页 返回 结束 一、三重积分的概念 类似二重积分解决问题的思想, 采用 引例: 设在空间有限闭区域 内分布着某种不均匀的 物质,求分布在 内的物质的 可得 “大化小, 常代变, 近似和, 求极限” 解决方法: 质量 M . 密度函数为 目录 上页 下页 返回 结束 定义. 设 存在, 称为体积元素, 若对 作任意分割: 任意取点 则称此极限为函数在 上的三重积分. 在直角坐标系下常写作 三重积分的性质与二重积分相似.性质: 例如 下列“乘 中值定理.在有界闭域 上连续, 则存在使得 V 为 的 体积, 积和式” 极限 记作 目录 上页 下页 返回 结束 二、三重积分的计算 1. 利用直角坐标计算三重积分 方法1 . 投影法 (“先一后二”) 方法2 . 截面法 (“先二后一”) 方法3 . 三次积分法 先假设连续函数 并将它看作某物体 通过计算该物体的质量引出下列各计算 最后, 推广到一般可积函数的积分计算. 的密度函数 , 方法: 目录 上页 下页 返回 结束 方法1. 投影法 (“先一后二” ) 该物体的质量为 细长柱体微元的质量为 微元线密度 记作 目录 上页 下页 返回 结束 方法2. 截面法 (“先二后一”) 为底, d z 为高的柱形薄片质量为 该物体的质量为 面密度 记作 目录 上页 下页 返回 结束 投影法 方法3. 三次积分法 设区域 利用投影法结果 , 把二重积分化成二次积分即得: 目录 上页 下页 返回 结束 当被积函数在积分域上变号时, 因为 均为为非负函数 根据重积分性质仍可用前面介绍的方法计算. 目录 上页 下页 返回 结束 小结: 三重积分的计算方法 方法1. “先一后二” 方法2. “先二后一” 方法3. “三次积分” 具体计算时应根据三种方法(包含12种形式)各有特点, 被积函数及积分域的特点灵活选择. 目录 上页 下页 返回 结束 其中 为三个坐标例1. 计算三重积分 所围成的闭区域 . 解: 面及平面 目录 上页 下页 返回 结束 例2. 计算三重积分 解: 用“先二后一 ” 目录 上页 下页 返回 结束 2. 利用柱坐标计算三重积分 就称为点M 的柱坐标. 直角坐标与柱面坐标的关系: 坐标面分别为 圆柱面 半平面 平面 目录 上页 下页 返回 结束 如图所示, 在柱面坐标系中体积元素为 因此 其中 适用范围: 1) 积分域表面用柱面坐标表示时方程简单 ; 2) 被积函数用柱面坐标表示时变量互相分离. 目录 上页 下页 返回 结束 其中 为 例3. 计算三重积分 所 解: 在柱面坐标系下 及平面由柱面 围成半圆柱体. 目录 上页 下页 返回 结束 例4. 计算三重积分 解: 在柱面坐标系下 所围成 . 与平面 其中 由抛物面 原式 = 目录 上页 下页 返回 结束 3. 利用球坐标计算三重积分 就称为点M 的球坐标. 直角坐标与球面坐标的关系 坐标面分别为 球面 半平面 锥面 目录 上页 下页 返回 结束 如图所示, 在球面坐标系中体积元素为 因此有 其中 适用范围: 1) 积分域表面用球面坐标表示时方程简单; 2) 被积函数用球面坐标表示时变量互相分离. 目录 上页 下页 返回 结束 例5. 计算三重积分 解: 在球面坐标系下 所围立体. 其中 与球面 目录 上页 下页 返回 结束 例6.求曲面所围立体体积. 解: 由曲面方程可知, 立体位于xOy面上部, 利用对称性, 所求立体体积为 yOz面对称, 并与xOy面相切, 故在球坐标系下所围立体为 且关于 xOz 目录 上页 下页 返回 结束 内容小结 积分区域多由坐标面 被积函数形式简洁, 或 坐标系 体积元素 适用情况 直角坐标系 柱面坐标系 球面坐标系 * 说明: 三重积分也有类似二重积分的换元积分公式: 对应雅可比行列式为 变量可分离. 围成 ; 目录 上页 下页 返回 结束 1. 将用三次积分表示,其中 由 所 提示: 思考与练习 六个平面 围成 , 目录 上页 下页 返回 结束 2. 设计算 提示: 利用对称性 原式 = 奇函数 目录 上页 下页 返回 结束 3. 设 由锥面和球面 所围成 , 计算 提示: 利用对称性 用球坐标 目录 上页 下页 返回 结束 作业 P162 1(2),(3),(4); 4; 5; 7; 8; 9 (2); *10 (2) ; 11 (1), *(4) 第四节 目录 上页 下页 返回 结束 备用题 1. 计算 所围成. 其中 由 分析:若用“先二后一”, 则有 计算较繁!
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货物销售代办协议合同
- 监理人员聘用合同范本
- 监控系统验收合同范本
- 美容合伙开店协议合同
- 绿化给水劳务合同范本
- 购房合同购房协议范本
- 物业转让管理合同范本
- 2025年昆虫博士面试真题及答案
- 美国建材采购合同范本
- 酒厂委托销售合同范本
- 国开2025年春本科《国家安全教育》形考作业1-4终考答案
- 硫化氢安全防护知识培训课件
- 2025年中医确有专长考试题库(附答案)与答案
- 民办高校与公办高校结对共建的策略及实施路径
- 2025年-思想道德与法治2023版第五章教学设计教案 遵守道德规范 锤炼道德品格-新版
- 2025年广西国家公务员申论考试真题及答案
- 部队炊事班年度工作总结
- 铝合金铸造企业安全培训课件
- 月嫂产褥期的心理护理
- 招商管理考试题目及答案
- 斜视教学课件
评论
0/150
提交评论