




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章 多属性决策分析 决策指标的标准化 决策指标权重的确定 加权和法 加权积法 Topsis法 Electre 法(不讲) Promethee法(不讲) 第一节 多属性决策的准备工作 多属性决策的准备工作包括:决策问题的描述、相关信息 的采集(即形成决策矩阵)、决策数据的预处理和方案的初选 (或称为筛选)。 一、决策矩阵 经过对决策问题的描述(包括设立多属性指标体系)、各 指标的数据采集,形成可以规范化分析的多属性决策矩阵。(困 难,列方程和解方程的关系,理论和实践之间的关系) 设有n个决策指标fi(1jn),m个备选方案ai 1im),m 个方案n个指标构成的矩阵 X=(xij)mn 称为决策矩阵。决策矩阵是规范性分析的基础。 决策指标分两类:效益型(正向)指标,数值越大越优; 成本型指标(逆向指标),数值越小越优。 指标Xj 替代方案 Ai 期望 利润( 万元) 产品成 品率(% ) 市场占 有率(% ) (万元 )投资 费用 产品外 观 自行设计 (A1) 6509530110美 观 国外引进 (A2) 7309735180 比较美 观 改 建( A3) 520922550美 观 为了直观,也可以辅助于决策表 二、决策指标的标准化 指标体系中各指标均有不同的量纲,有定量和定性,指标之 间无法进行比较。 将不同量纲的指标,通过适当的变化,化为无量纲的标准化 指标,称为决策指标的标准化,又叫数据预处理。 有三个作用: 1)变为正向指标 2)非量纲化,消除量纲影响,仅用数值表示优劣 3)归一化,把数值均转变为0,1区间上,消除指标值标度 差别过大的影响。 下面介绍几个常用的预处理方法。在决策中可以根据情况 选择一种或几种对指标值进行处理。 指标的标准化可以部分解决目标属性的不可公度性。 1、向量归一化 2、线性比例变化法 3、极差变换法 4、标准样本变换法 5、定性指标的量化处理 如一些可靠性、满意度等指标往往具有模糊性,可以将指标 依问题性质划分为若干级别,赋以适当的分值。一般可以分 为5级、7级、9级等。 见例71 P208 三、决策指标权的确定 多属性决策问题的特点,也是求解的难点在于目标间的矛盾性 和各目标的属性的不可公度。不可公度性通过决策矩阵的标准 化处理得到部分解决;解决目标间的矛盾性靠的是引入权 (weight)这一概念。 权,又叫权重,是目标重要性的度量。权的概念包含并反映下 列几重因素: 决策人对目标的重视程度; 各目标属性的差异程度; 各目标属性的可靠程度 确定权重是非常困难的,因为主观的因素,权重很难准确。 确定权的方法有两大类: 主观赋权法:根据主观经验和判断,用某种方法测定属性指标 的权重; 客观赋权法:根据决策矩阵提供的评价指标的客观信息,用某 种方法测定属性指标的权重。 两类方法各有利弊,实际应用时可以结合使用。 下面介绍几种常用的确定权的方法 1、相对比较法 相对比较法是一种主观赋权法。将所有指标分别按行和列,构 成一个正方形的表,根据三级比例标度,指标两两比较进行评 分,并记入表中相应位置,再将评分按行求和,最后进行归一 化处理,得到各指标的权重。 例72 P210 使用本方法时要注意:1、指标之间要有可比性;2、应满 足比较的传递性(一致性)。 2、连环比较法(古林法) 连环比较法也是一种主观赋权法。以任意顺序排列指标,按顺 序从前到后,相邻两指标比较其相对重要性,依次赋以比率值 ,并赋以最后一个指标的得分值为1;从后往前,按比率依次 求出各指标的修正评分值;最后进行归一化处理,得到各指标 的权重。 例73 P211 本方法容易满足传递性,但也容易产生误差的传递。 3、特征向量法 应用前两种方法时,如果目标属性比较多,一旦主观赋值一致 性不好时也无法进行评估。为了能够对一致性可以进行评价, Saaty引入了一种使用正数的成对比较矩阵的特征向量原理测量 权的方法,叫做特征向量法。这种方法在层次分析法(AHP)采 用,也可以用在其他多属性决策。 下面我们讲解一下原理。 3.1 权重的求解思路 假设各属性真实的权重是 因此权重向量 的求解方法: 用幂法原理求矩阵A的最大特征值及其对应的特征向量。 算术平均法。对于一个一致的判断矩阵,它每一列归一化后,就 是相应的权重向量;当判断矩阵不太一致时,每一列归一化后 就是近似的权重向量,可以按行相加后再归一化(相当算术平 均值)。 1)将判断矩阵按列归一化(即使列和为1): 2)按行求和得一向量: 3)再向量归一化: 所得 即为A的特征向量的近似值,也就是权重。 4)求A的最大特征值 几何平均法。对于一个一致的判断矩阵,按行求几何平均值得到 的向量是和权重向量成固定比例的,归一化后就是近似的权重 向量。 1)将矩阵A按行求几何平均值: 2)对向量 归一化,令 所得 即为A的特征向量的近似值,也就是权 重。 3)按 求最大特征值。 3.2 一致性检验 3.3 判断矩阵的构造 19标度法则 得到判断矩阵后的第一步是要进行一致性检验,只有通过检 验,计算的权向量才有价值。 详细内容参考教材p166p180 案例 4、最小加权法 又称最小二乘法,是Chu等人提出的,它涉及线性代数方 程组解集,而且从概念上比Saaty的特征向量法更容易理解。 注意:本方法同样要求判断矩阵的一致性。 5、信息熵法 信息熵法是一个客观的赋权法,根据决策矩阵所具有的 信息量来赋权。 如果某一个属性(准则)的值对所有的方案都差不多, 那么这个属性对于决策来讲作用就不大,即便是这个属性很 重要。如何测定这种效应呢? 在信息学中,熵是不确定性的一个指标,用概率分布来 表示,它认为一个广泛的分布比具有明显峰值的分布表示更 不确定。Shannon给出的表达方法如下: 其中k是正的常数。当所有的Pi都相等时,即Pi=1/n,熵值最 大。指标值的差异越小,对方案的评价作用越低,权重应该 减小。 X1X2X3X4X5X6 Ej Dj j 0.9446 0.0054 0.0649 0.9829 0.0171 0.2055 0.9989 0.0011 0.0133 0.9931 0.0069 0.0829 0.9703 0.0297 0.3570 0.9770 0.0230 0.2764 分别计算每个属性的熵、差异系数和标准化权重: 可见,X5的权重最大,X3的权重最小。 第二节 多属性决策方法 1、标准水平法 由于多属性决策时,属性间具有不可替代性,决策人对部分或全 部属性可能设定标准水平要求。有两种方式: 1)联合法 决策者设立了必须接受的最小属性值(标准等级),任何不满足 最小属性值的方案都被否定,这种方法叫联合法。 关键点在于标准等级(也叫阈值)的设定,要适当。 如:考研单科设限、招收新员工、评定职称 2)分离法 分离法评价方案是建立在最大的一个属性值上,达到标准的方案 就接受。 如:高考特招生、选拔足球运动员(在防守、速度特长) 特点: 属性间不可补偿 在实践中被大量应用 可以保证任何在某方面特别差的个体或方案不被选入 只需分出接受或不接受 特点: 在实践中被大量应用 可以保证所有个体或方案在某方面有特长 2、字典法 本方法类似查字典。 对于一些决策情形下,单个的属性在决策中的作用很显著,甚 至在最重要的属性上就可以进行决策。在最重要属性上,如果 某个方案对于其他方案有较高的属性值,该方案就被选择,决 策结束;如果在最重要的属性上不能区分优劣,就以第二重要 的属性来进行比较;这个过程可以进行进行,直到一个方案被 选中或所有的属性都被考虑过。 如:高校招生,按高考成绩排序,同样成绩者,优秀三好生优 先。 特点: 本方法需要对属性的重要性排序 有可能漏掉更好的方案,如对高考的批评。 可能的改进是不会因为属性值略高一点就被认为更好。 3、简单线性加权法P212 是一种最常用的多属性决策方法。方法是先确定各决策指标的 权重,再对决策矩阵进行标准化处理,求出各方案的线性加权 均值,以次作为各方案排序的判据。 注意:标准化时,要把所有指标属性正向化。 步骤: 1)用适当的方法确定各属性的权重,设权重向量为 3)求出各方案线性加权指标值 4)选择线性加权指标值最大者为最满意方案 例74 P212 注意: 1)简单线性加权法潜在的假设是各属性在偏好上独立,即单个 属性值对于整体评价的影响与其他属性值相互独立。如篮球运 动员身高和体重不是相互独立的。 2)权重设定的不可靠。如一个权重是0.1,另一个是0.4,多达4 倍的关系,是否真正合理? 3)假设多个属性的效用可以分解成单个属性的效用。如篮球运 动员身高和体重需要相匹配。 4)但是理论推导、仿真计算和经验判断都表明,简单加权法与 复杂的非线性形式产生的结果很相似,而前者有简单多的理解 和使用特点,因此得到普遍的应用。 4、理想解法(TOPSIS法)P213 由Yoon和Hwang开发,又称逼近理想解排序法(Technique for Order Preference by Similarity to Ideal Solution) 这种方法通过构造多属性问题的理想解和负理想解,以方案靠近 理想解和远离负理想解两个基准作为方案排序的准则,来选择最 满意方案。 理想解:就是设想各指标属性都达到最满意值的解; 负理想解:就是设想各指标属性都达到最不满意值的解。 理想解和负理想解一般都是虚拟的方案 可以将m各方案n个属性的多属性决策问题视作在n维空间中的m 个点构成的几何系统中进行处理,此时所有的方案都看成该系统 的解。 为了直观起见,用两个属性的决策空间: 图中A*为理想解,A为负理想解 各方案接近理想解和远离负理想解的测
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隆昌市知行中学2025-2026学年度第一学期初中八年级第一次月考数学试题(组卷)参考答案及评分意见
- 达尔文进化论课件
- 基于区块链技术的逆向物流溯源体系对回收率的提升机制探析
- 城市地下管廊出线盒抗震性能与防水密封的协同失效机制分析
- 可降解环保材料在切边齿形带中的应用潜力及降解性能评估体系
- 可持续生产模式探索:刀豆球蛋白生物发酵过程碳足迹与废弃物资源化
- 反应性稀释剂在微流控芯片中的可控聚合机制与工业转化瓶颈
- 反光轮廓标全生命周期碳足迹追踪与绿色供应链重构路径
- 双碳目标下的切换柜轻量化设计挑战与再生材料应用边界探索
- 区域产业集群发展模式对氟苯衍生物成本曲线的重构
- 数字产品服务使用协议书
- 中国邮政储蓄银行个人额借款合同4篇
- 重庆市南开中学高2025-2026学年高三上学期开学第一次检测语文试卷
- (人教版2017课标)高中物理必修第三册 第十章综合测试及答案03
- 4人合股合同协议书范本
- 【2025年】铁路机车车辆驾驶员资格考试模拟试卷(410题)及参考答案
- 【2025年】全民科学素质竞赛网络知识竞赛考试试卷题库(290题)附答案
- 2023-2025年高考生物试题分类汇编:孟德尔两大遗传定律原卷版
- 脑血管超声课件
- 2025年机器人标准化行业发展趋势分析报告
- 机械检验考试试题及答案
评论
0/150
提交评论