



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2 简单的三角恒等变换【学习目标】1.知识与技能能正用、逆用两角和差、二倍角公式进行三角函数式的恒等变形;2.过程与方法通过二倍角的变形公式导出半角的正弦、余弦、正切公式(不要求记忆与应用),体会化归、换元、方程、逆向使用公式等数学思想方法, 3.情感、态度、价值观恒等变换是研究三角的重要手段从中体会三角恒等变形在数学中的应用.【预习任务】 1. 两角和(差)正、余弦公式的逆用sincos+ cossin=sincoscossin= coscos+ sinsin=coscossinsin= 2两角和(差)正切公式的逆用tan+tan= tantan= 3倍角公式的逆向变换及有关变形:1sin2a= (完全平方);1+cos2a= , (升幂公式); 1-cos2a= (升幂公式);cos2a= , (降幂公式);sin2a= (降幂公式).sinacosa= ;cos2a-sin2a= ,(用正切表示).【自主检测】1.已知,(,),求sin-cos;sin与cos 2已知sin(x)sin(x),则cos4x=_. 【组内互检】sincos+ cossin=sincoscossin= coscos+ sinsin=coscossinsin=tan+tan= tantan=简单的三角恒等变换【学习目标】1.知识与技能 通过对三角函数式中角、函数名称、结构特征的分析,进一步熟悉三角恒等变形的技巧和方法;2.过程与方法抓住角、函数式的特点,灵活运用三角公式解决一些实际问题;3.情感、态度、价值观培养学生观察、分析、解决问题的能力和意识【预习任务】1三角运算的总则:同角、同名、同次.2三角恒等变形的技巧:3几种常见题型: 【自主检测】1._ 2已知q是第三象限角,若sin4q+cos4q= ,则sin2q= .【组内互检】三角恒等变换小结与复习【学习目标】1.知识与技能熟记本章的和角、差角、二倍角公式及公式的变形;能利用三角公式及变形技巧对三角函数式进行恒等变形,进而讨论三角函数的图象及其性质;2.过程与方法通过对本章的知识的复习、总结,使学生对本章形成一个知识框架网络;3.情感、态度、价值观培养学生分析问题,运用知识解决问题的能力.【预习任务】1.公式及其变形 2.恒等变形在三角函数图象及性质研究中的作用(即研究图象性质的方法): 3三角恒等变换的技巧: 4.三角运算常见题型:【自主检测】1.函数的最大值为_,最小正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度展会现场安保服务委托合同
- 2025仓储与配送一体化服务定金合同模板
- 2025年度电力设施抢修施工安全防护与应急处置合同
- 2025版铁路施工安全风险评估与预防合同
- 2025版太阳能外接电源系统安装合同范本
- 2025年高档木门窗定制与安装服务合同
- 2025年土壤污染修复技术应用效果与成本效益评估研究调研报告
- 2025版城市公共交通设施维护与售后服务合同范本
- 2025版专业外架施工班组劳务承包合作协议书
- 2025版桥梁建设施工设备租赁与施工方案制定合同
- 健康四大基石科普讲座
- 护士培训班自我介绍
- 纪检监督检查培训课件
- 酒店公章使用管理办法
- 大兴安岭黄岗锡铁钨多金属矿床的成矿过程研究
- 2025至2030中国裸眼3D行业产业运行态势及投资规划深度研究报告
- 深呼吸有效咳嗽实施方法
- 检修安全监护管理制度
- 2025至2030中国妊娠和排卵测试行业产业运行态势及投资规划深度研究报告
- 高等教育2025年工作要点
- 2025-2030学生文具行业市场发展分析及竞争格局与投资战略研究报告
评论
0/150
提交评论