高中数学第二章基本初等函数Ⅰ2.3幂函数教案新人教A版.docx_第1页
高中数学第二章基本初等函数Ⅰ2.3幂函数教案新人教A版.docx_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3幂函数 1.知识与技能(1)理解幂函数的概念,会画幂函数的图象;(2)结合几个幂函数的图象,了解幂函数图象的变化情况和简单性质.2.过程与方法(1)类比研究一次函数、二次函数、反比例函数、指数函数、对数函数的过程与方法,研究幂函数的图象和性质.引导学生通过观察、归纳、抽象,概括幂函数的性质,培养学生概括抽象和识图能力.能运用幂函数的概念解决简单的问题;(2)使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.3.情感、态度与价值观(1)通过生活实例引出幂函数的概念,使学生体会到数学在实际生活中的应用,激发学生的学习兴趣;(2)进一步渗透数形结合与类比的思想方法;(3)体会幂函数的变化规律及蕴含其中的对称性.重点:从五个具体的幂函数中认识幂函数的概念和性质.难点:从幂函数的图象中概括其性质.重难点的突破:以学生熟知的函数y=x,y=x2,y=,y=x3,y=为切入点,类比指数函数及对数函数的概念得出幂函数的概念.通过学生自主作图,并观察五个具体的幂函数的图象,经小组讨论并结合多媒体的直观演示,师生共同总结出函数y=x的图象特征.“幂”的由来数学史上很早就借用“幂”字,起先用于表示面、面积,后来扩充为表示平方或立方.1859年中国清末大数学家李善兰(18111882)译成代微积拾级一书,创设了不少数学专有名词,如函数、极限、微分、积分等,并把“Power”这个词译为“幂”,这样“幂”就转译为若干个相同数之积.大约到15世纪,人们才意识到要用一个缩写的方式来表示若干个相同数的乘积,直到17世纪才开始出现在幂的符号中将指数与底数分开来表示的趋势.1636年,苏格兰人休姆(Hume)引进了一种较好的记法,他用罗马数字表示指数,写在底数的右上角,如以Aiii表示A3,这种记法与现在相比较,除了数字采用罗马数字外,其他完全一样.一年以后,法国数学家笛卡儿进行了改进,将罗马数字改用阿拉伯数字,成了今天的样子.此后由英国数学家渥里斯、牛顿等人分别引入负指数幂和分数指数幂的概念及符号,从而使幂的概念及符号发展的更完善了.中国古代数学家刘徽在九章算术注(263年)中使用了“幂”字,一直用到现在.一数自乘,中国古代称之为“方”,“乘方”一语是宋代以后开始使用的.一个数的乘方指数在中国古代是用这个数在筹算(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论