



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3 二项式定理1.3.2“杨辉三角”与二项式系数的性质A级基础巩固一、选择题1(1x)2n1(nN*)的展开式中,二项式系数最大的项所在的项数是()An,n1Bn1,nCn1,n2 Dn2,n3解析:因为2n1为奇数,所以展开式中间两项的二项式系数最大,中间两项的项数是n1,n2.答案:C2设 (x21)(2x1)9a0a1(x2)a2(x2)2a11(x2)11,则a0a1a2a11的值为()A2B1C1D2解析:令等式中x1可得a0a1a2a11(11)(1)92,故选A.答案:A3已知的展开式的二项式系数之和为32,则展开式中含x项的系数是()A5 B20 C10 D40解析:根据题意,该二项式的展开式的二项式系数之和为32,则有2n32,可得n5,Tr1Cx2(5r)xrCx103r,令103r1,解得r3,所以展开式中含x项的系数是C10,故选C.答案:C4已知C2C22C2nC729,则CCC的值等于 ()A64B32 C63D31解析:由已知(12)n3n729,解得n6,则CCCCCC2632.答案:B5已知的展开式中,各项系数的和与各二项式系数的和之比为64,则n等于()A4 B5 C6 D7解析:令x1,得各项系数的和为4n,又各二项式系数的和为2n,故64.所以n6.答案:C二、填空题6(a)n的展开式中奇数项系数和为512,则展开式的第八项T8_解析:CCC2n151229,所以n10,所以T8Ca3()7120a.答案:120a7(1)n展开式中的各项系数的和大于8而小于32,则系数最大的项是_解析:因为8CCCCC32,即82n32.所以n4.所以展开式共有5项,系数最大的项为T3C()26x.答案:6x8如图所示,满足如下条件:第n行首尾两数均为n;表中的递推关系类似“杨辉三角”则第10行的第2个数是_,第n行的第2个数是_1223434774511141156162525166解析:由图表可知第10行的第2个数为:(1239)146,第n行的第2个数为:123(n1)11.答案:46三、解答题9已知(2x3)4a0a1xa2x2a3x3a4x4,求:(1)a0a1a2a3a4;(2)(a0a2a4)2(a1a3)2.解:(1)由(2x3)4a0a1xa2x2a3x3a4x4,令x1得(23)4a0a1a2a3a4,所以a0a1a2a3a41.(2)在(2x3)4a0a1xa2x2a3x3a4x4中,令x1得(23)4a0a1a2a3a4,令x1得 (23)4a0a1a2a3a4.所以(a0a2a4)2(a1a3)2(a0a1a2a3a4)(a0a1a2a3a4)(23)4(23)4(23)4(23)4625.10(12x)n的展开式中第六项与第七项的系数相等,求展开式中二项式系数最大的项和系数最大的项解:T6C(2x)5,T7C(2x)6,依题意有C25C26,解得n8.所以(12x)n的展开式中,二项式系数最大的项为T5C(2x)41 120x4.设第(k1)项系数最大,则有解得5k6.又因为k0,1,2,8,所以k5或k6.所以系数最大的项为T61 792x5,T71 792x6.B级能力提升1若9nC9n1C9C是11的倍数,则自然数n为()A奇数 B偶数C3的倍数 D被3除余1的数解析:9nC9n1C9C(9n1C9nC92CC)(91)n1(10n11)是11的倍数,所以n1为偶数,n为奇数答案:A2(2015山东卷)观察下列各式:C40;CC41;CCC42;CCCC43;照此规律,当nN*时,CCCC_解析:具体证明过程可以是:CCCC(2C2C2C2C)(CC)(CC)(CC)(CC)(CCCCCC)22n14n1.答案:4n13已知(a21)n展开式中的各项系数之和等于的展开式的常数项,而(a21)n的展开式的系数最大的项等于54,求a的值解:由得Tr1CCx,令Tr1为常数项,则20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文化遗产数字化展示与传播在文化遗产数字化展示与传播产业链升级中的应用策略报告
- 驾校聘用副校长合同范本
- 理疗床产品经销合同范本
- 终止联通通信合同协议书
- 鱼塘虾池转让协议书范本
- 渣土车个人运输合同协议
- 甲方租赁合同终止协议书
- 镇政府投资项目合同范本
- 自考领取证书免责协议书
- 黑户自卸车买卖合同范本
- 上市专项工作组管理办法
- 四川省成都市武侯区2024-2025学年八年级下学期期末物理试卷(含答案)
- 《思想道德与法治》学习通课后章节答案期末考试题库2025年
- 清廉讲堂活动方案
- 家居落地活动方案
- 服装艺术搭配培训课件
- 2025年 汕头市公安局警务辅助人员招聘考试笔试试卷附答案
- 航空公司统计管理制度
- 安全班组建设成果汇报
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 2024华师一附中自招考试数学试题
评论
0/150
提交评论