



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八教时教材:不等式证明三(分析法)目的:要求学生学会用分析法证明不等式。过程:一、 介绍“分析法”:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题。二、 例一、求证:证: 综合法: 只需证明: 21 25 展开得: 即: 即: 21 0,y 0,证明不等式:证一:(分析法)所证不等式即: 即: 即: 只需证: 成立 证二:(综合法) x 0,y 0, 例三、已知:a + b + c = 0,求证:ab + bc + ca 0证一:(综合法)a + b + c = 0 (a + b + c)2 = 0 展开得: ab + bc + ca 0证二:(分析法)要证ab + bc + ca 0 a + b + c = 0 故只需证 ab + bc + ca (a + b + c)2 即证: 即: (显然) 原式成立证三:a + b + c = 0 - c = a + b ab + bc + ca = ab + (a + b)c = ab - (a + b)2 = -a2 -b2 -ab = 例四、(课本例)证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大。 证:设截面周长为l,则周长为l的圆的半径为,截面积为,周长为l的正方形边长为,截面积为 问题只需证: 即证: 两边同乘,得:因此只需证:4 p (显然成立) 也可用比较法(取商)证,也不困难。三、 作业: P18 练习 13 及 习题6.3 余下部分补充作业:1 已知0 q p,证明:略证:只需证: 0 q 0故只需证:即证: 1 + cosq 0只需证:即只需证:即: (成立)2 已知a b 0,q为锐角,求证:略证:只需证: 即:(成立) 3 设a, b, c是的ABC三边,S是三角形的面积,求证:略证:正弦、余弦定理代入得: 即证:即:即证:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程咨询服务创新创业项目商业计划书
- 星空风格浴场景创新创业项目商业计划书
- 尿酸痛风药物创新创业项目商业计划书
- 海洋渔业质量安全追溯体系创新创业项目商业计划书
- 大豆蛋白棒生产创新创业项目商业计划书
- 录音电话创新创业项目商业计划书
- 宠物领养家庭支持网络创新创业项目商业计划书
- 经典诗歌《回延安》教学全案解析
- 人防工程维护保养操作规程
- 2025年德州工勤考试试题及答案
- 筑梦项目启动仪式PPT模板
- 2023年河北省专业技术人员公需科目继续教育专业技术人员创新与经营试题及答案分解
- 发展对象培训班考试题库答案
- 珂立苏的使用方法2011-3-23课件
- 赣价协〔2023〕9号江西省建设工程造价咨询服务收费基准价
- 婴幼儿教养环境创设
- 颅脑外伤(共61张PPT)
- 防爆设备规格书
- 污水井 化粪池清掏合同
- 华能分布式光伏项目EPC总承包工程投标文件-技术部分
- 合唱团训练教案
评论
0/150
提交评论