




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.2 第1课时 椭圆的简单几何性质(建议用时:45分钟)学业达标一、选择题1椭圆25x29y2225的长轴长、短轴长、离心率依次是()A5,3,B10,6,C5,3, D10,6,【解析】椭圆方程可化为1.a5,b3,c4,长轴长2a10,短轴长2b6,离心率e.故选B.【答案】B2若焦点在x轴上的椭圆1的离心率为,则m等于()A. B.C. D.【解析】椭圆焦点在x轴上,0m2,a,c,e.故,m.【答案】B3中心在原点,焦点在x轴,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是()A.1 B.1C.1 D.1【解析】因为2a18,2c2a6,所以a9,c3,b281972.故所求方程为1.【答案】A4已知椭圆1(ab0)的两顶点为A(a,0),B(0,b),且左焦点为F,FAB是以角B为直角的直角三角形,则椭圆的离心率e为() 【导学号:25650051】A. B.C. D.【解析】由题意得a2b2a2(ac)2,即c2aca20,即e2e10,解得e,又e0,故所求的椭圆的离心率为.故选B.【答案】B5设e是椭圆1的离心率,且e,则实数k的取值范围是()A(0,3) B.C(0,3) D(0,2)【解析】当焦点在x轴上时,e2,解得0k3.当焦点在y轴上时,e2,解得k.综上可知选C.【答案】C二、填空题6已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为_【解析】由题意得解得椭圆方程为1或1.【答案】1或17已知椭圆1的离心率为,则k的值为_.【解析】当k89时,e2,k4;当k89时,e2,k.【答案】4或8若椭圆的两焦点为F1(4,0),F2(4,0),点P在椭圆上,且PF1F2的最大面积是12,则椭圆的短半轴长为_【解析】设P点到x轴的距离为h,则SPF1F2|F1F2|h,当P点在y轴上时,h最大,此时SPF1F2最大,|F1F2|2c8,h3,即b3.【答案】3三、解答题9椭圆1(ab0)的两焦点F1(0,c),F2(0,c)(c0),离心率e,焦点到椭圆上点的最短距离为2,求椭圆的方程【解】椭圆的长轴的一个端点到焦点的距离最短,ac2.又e,a2,c,b21,椭圆的方程为x21.10.如图214所示,F1,F2分别为椭圆的左,右焦点,M为椭圆上一点,且MF2F1F2,MF1F230.试求椭圆的离心率图214【解】设椭圆的长半轴、短半轴、半焦距分别为a,b,c.因为MF2F1F2,所以MF1F2为直角三角形又MF1F230,所以|MF1|2|MF2|,|F1F2|MF1|.而由椭圆定义知|MF1|MF2|2a,因此|MF1|,|MF2|,所以2c,即,即椭圆的离心率是.能力提升1已知P是椭圆上一定点,F1,F2是椭圆的两个焦点,若PF1F260,|PF2|PF1|,则椭圆的离心率为() 【导学号:25650052】A. B.1C2 D1【解析】由题意可得PF1F2是直角三角形,|F1F2|2c,|PF1|c,|PF2|c.点P在椭圆上,由椭圆的定义可得e1.【答案】B2若点O和点F分别为椭圆1的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A2B3 C6D8【解析】由题意得F(1,0),设点P(x0,y0),则y3(2x02),x0(x01)yxx0yxx03(x02)22,当x02时,取得最大值为6.故选C.【答案】C3椭圆的焦点在y轴上,一个焦点到长轴的两端点的距离之比是14,短轴长为8,则椭圆的标准方程是_【解析】由题意得,解得ca.又短轴长为2b,则2b8,即b4,故b2a2c2a2216,则a225.故椭圆的标准方程为1.【答案】14设F1,F2分别是椭圆E:1(ab0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|3|BF1|.(1)若|AB|4,ABF2的周长为16,求|AF2|;(2)若cosAF2B,求椭圆E的离心率【解】(1)由|AF1|3|BF1|,|AB|4,得|AF1|3,|BF1|1.因为ABF2的周长为16,所以由椭圆定义可得4a16,|AF1|AF2|2a8.故|AF2|2a|AF1|835.(2)设|BF1|k,则k0,且|AF1|3k,|AB|4k.由椭圆定义可得|AF2|2a3k,|BF2|2ak.在ABF2中,由余弦定理可得|AB|2|AF2|2|BF2|22|AF2|BF2|cosAF2B,即(4k)2(2a3k)2(2ak)2(2a3k)(2ak),化简可得(ak)(a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年福建省三明市尤溪县总医院招聘10人考前自测高频考点模拟试题附答案详解(突破训练)
- 药物作用靶点-洞察与解读
- 2025年长庆油田分公司春季招聘(50人)模拟试卷及答案详解(名校卷)
- 2025黑龙江双鸭山市宝清县招聘就业见习人员917人考前自测高频考点模拟试题及答案详解(新)
- 2025广西农信社招考447人职位表考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年合肥滨投文化创意发展有限公司招聘3人考前自测高频考点模拟试题及完整答案详解一套
- 2025国网国际发展有限公司第二批高校毕业生录用人选的模拟试卷及答案详解1套
- 2025黑龙江绥化市庆安县招聘教师36人考前自测高频考点模拟试题及答案详解1套
- 2025国有四大银行远程银行中心诚聘客服代表招聘考前自测高频考点模拟试题及答案详解参考
- 热电池安全性研究-洞察与解读
- CJ/T 514-2018燃气输送用金属阀门
- CJ/T 244-2016游泳池水质标准
- 环保型氟硅橡胶鞋垫行业跨境出海项目商业计划书
- 智能语音识别技术原理与应用课件
- 签约红娘合作协议书
- 2025年公共营养师考试题及答案
- 2024年09月山东枣庄市妇幼保健院青年就业见习拟录用笔试历年专业考点(难、易错点)附带答案详解
- 2025年长沙卫生职业学院单招职业技能测试题库及答案1套
- 西师大版小学五年级数学(下)第一学月测试题(1-2单元)(含答案)
- 《春之歌》名师课件
- TCHSA 082-2024 上颌窦底提升专家共识
评论
0/150
提交评论