

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.5 逆命题与逆定理角平分线教学目的:角平分线定理及逆命题的应用重点与难点:角平分线定理及逆命题的应用教学过程:回 忆我们知道角平分线上的点到这个角的两边的距离相等角平分线的这条性质是怎样得到的呢?如图13.5.4,OC是AOB的平分线,点P是OC上任意一点,PDOA, PEOB,垂足分别为点D和点E当时是在半透明纸上描出了这个图,然后沿着射线OC对折,通过观察,线段PD和PE完全重合于是得到PDPE与等腰三角形的判定方法相类似,我们也可用逻辑推理的方法加以证明.图中有两个直角三角形PDO和PEO,只要证明这两个三角形全等,便可证得PDPE于是就有定理:角平分线上的点到这个角的两边的距离相等此定理的逆命题是“到一个角的两边的距离相等的点在这个角的平分线上”,这个命题是否是真命题呢?即到一个角的两边的距离相等的点是否一定在这个角的平分线上呢?我们可以通过“证明”来解答这个问题已知: 如图13.5.5,QDOA, QEOB,点D、E为垂足,QDQE求证: 点Q在AOB的平分线上分析: 为了证明点Q在AOB的平分线上,可以作射线OQ,然后证明RtDOQRtEOQ,从而得到AOQBOQ证明:过点O、Q作射线OQ.QDOA,QEOB,QDO=QEO=90.在RtQDO和RtQEO中,OQ=OQ,QD=QE,RtQDORtQEO(HL)DOQ=EOQ点Q在AOB的平分线上于是就有定理:到一个角的两边距离相等的点,在这个角的平分线上上述两条定理互为逆定理,根据上述这两条定理,我们很容易证明: 三角形三条角平分线交于一点从图13.5.6中可以看出,要证明三条角平分线交于一点,只需证明其中的两条角平分线的交点一定在第三条角平分线上就可以了请你完成证明课堂练习:1 如图,在直线l上找出一点P,使得点P到AOB的两边OA、OB的距离相等2 如图,已知ABC的外角CBD和BCE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020-2025年一级造价师之建设工程技术与计量(土建)能力检测试卷B卷附答案
- 2022年年终总结(含内容)学习
- WRN-inhibitor-19-生命科学试剂-MCE
- 2025年人工智能训练师(中级)职业技能鉴定参考题库(含答案)
- 2025公务员岗位试题及答案
- 2025年水资源保护与利用投资合作合同样本
- 2025年校园后勤保障与绿色物业管理一体化服务合同
- 智能采光井系统安装调试及十年全面维护服务合同
- 2025年山地林业资源可持续利用与保护租赁合同
- 商务主持培训课件
- 贩卖人口罪与强迫劳动罪
- 新员工入职职业道德培训
- 婚内债务隔离协议书范本
- 2025秋部编版(2024)八年级上册语文上课课件 第三单元 阅读综合实践
- TZZB3051-2023电气绝缘用玻璃纤维增强不饱和聚酯块状阻燃模塑料UP-BMC
- 企业职务津贴管理制度
- 足外翻康复训练讲课件
- “AI+知识图谱”赋能高职院校金课建设的研究与实践
- 含氰废水破氰工艺及操作详解
- 2025年贵州安大航空锻造有限责任公司-企业报告(业主版)
- 借车给他人免责协议书
评论
0/150
提交评论