




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三讲 柯西不等式与排序不等式复习课学习目标1.梳理本专题主要知识,构建知识网络.2.进一步理解柯西不等式,熟练掌握柯西不等式的各种形式及应用技巧.3.理解排序不等式及应用.4.进一步体会柯西不等式与排序不等式所蕴含的数学思想及方法1二维形式的柯西不等式(1)二维形式的柯西不等式:若a,b,c,d都是实数,则(a2b2)(c2d2)(acbd)2.(2)柯西不等式的向量形式:设,是两个向量,则|,当且仅当是零向量,或存在实数k,使k时,等号成立(3)二维形式的三角不等式:设x1,y1,x2,y2R,那么.2一般形式的柯西不等式设a1,a2,a3,an,b1,b2,b3,bn是实数,则(aaa)(bbb)(a1b1a2b2anbn)2.当且仅当bi0(i1,2,n)或存在一个数k,使得aikbi(i1,2,n)时,等号成立3排序不等式设a1a2an,b1b2bn为两组实数,c1,c2,cn是b1,b2,bn的任一排列,则a1bna2bn1anb1a1c1a2c2ancna1b1a2b2anbn.类型一利用柯西不等式证明不等式例1已知a,b,c,d为不全相等的正数,求证:.证明由柯西不等式知,2,于是.等号成立abcd.又已知a,b,c,d不全相等,则中等号不成立即.反思与感悟利用柯西不等式证题的技巧(1)柯西不等式的一般形式为(aaa)(bbb)(a1b1a2b2anbn)2(ai,biR,i1,2,n),形式简洁、美观、对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式的证明问题迎刃而解(2)利用柯西不等式证明其他不等式的关键是构造两组数,并向着柯西不等式的形式进行转化,运用时要注意体会跟踪训练1若n是不小于2的正整数,求证:1.证明12,所以求证式等价于.由柯西不等式,有(n1)(n2)2nn2,于是,又由柯西不等式,有.综上,1.类型二利用排序不等式证明不等式例2设A,B,C表示ABC的三个内角弧度数,a,b,c表示其对边,求证:.证明不妨设0abc,于是ABC.由排序不等式,得aAbBcCaAbBcC,aAbBcCbAcBaC,aAbBcCcAaBbC.相加,得3(aAbBcC)(abc)(ABC)(abc),得.引申探究若本例条件不变,求证:.证明不妨设0abc,于是ABC.由0bca,0abc,0acb,有0A(bca)C(abc)B(acb)a(BCA)b(ACB)c(ABC)a(2A)b(2B)c(2C)(abc)2(aAbBcC)得.反思与感悟利用排序不等式证明不等式的策略(1)在利用排序不等式证明不等式时,首先考虑构造出两个合适的有序数组,并能根据需要进行恰当地组合这需要结合题目的已知条件及待证不等式的结构特点进行合理选择(2)根据排序不等式的特点,与多变量间的大小顺序有关的不等式问题,利用排序不等式解决往往很简捷跟踪训练2设a,b,c为正数,求证:a10b10c10.证明由a,b,c的对称性,不妨设abc,于是a12b12c12,.由排序不等式,得.又因为a11b11c11,再次由排序不等式,得.由得a10b10c10.类型三利用柯西不等式或排序不等式求最值例3(1)求实数x,y的值使得(y1)2(xy3)2(2xy6)2达到最小值(1)解由柯西不等式,得(122212)(y1)2(3xy)2(2xy6)21(y1)2(3xy)1(2xy6)21,即(y1)2(xy3)2(2xy6)2,当且仅当,即x,y时,上式取等号故x,y.(2)设a1,a2,a3,a4,a5是互不相同的正整数,求Ma1的最小值解设b1,b2,b3,b4,b5是a1,a2,a3,a4,a5的一个排列,且b1b2b3b4b5.因此b11,b22,b33,b44,b55.又1.由排序不等式,得a1b11123451.即M的最小值为.反思与感悟利用柯西或排序不等式求最值的技巧(1)有关不等式问题往往要涉及对式子或量的范围的限定,其中含有多变量限制条件的最值问题往往难以处理在这类题目中,利用柯西不等式或排序不等式处理往往比较容易(2)在利用柯西不等式或排序不等式求最值时,要关注等号成立的条件,不能忽略跟踪训练3已知正数x,y,z满足xyzxyz,且不等式恒成立,求的取值范围解.故的取值范围是.1函数y2的最大值为()A.BC3D3答案D解析y2(1)2()212()2()2339.y3,y的最大值为3.2已知实数a,b,c,d满足abcd3,a22b23c26d25,则a的最大值是()A1B2C3D4答案B解析(2b23c26d2)(bcd)2,即2b23c26d2(bcd)2.5a2(3a)2.解得1a2.验证:当a2时,等号成立3已知2x3y4z10,则x2y2z2取到最小值时的x,y,z的值为()A.,B.,C1,D1,答案B解析由柯西不等式得(223242)(x2y2z2)(2x3y4z)2,即x2y2z2.当且仅当时,等号成立,所以联立可得x,y,z.4设a,b,c都是正数,求证:abc.证明不妨设abc0,则,abacbc,abc,abc.1对于柯西不等式要特别注意其向量形式的几何意义,从柯西不等式的几何意义出发就得到了三角形式的柯西不等式,柯西不等式的一般形式也可以写成向量形式2参数配方法是由旧知识得到的新方法,注意体会此方法的数学思想3对于排序不等式要抓住它的本质含义:两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小,注意等号成立条件是其中一序列为常数序列4数学建模是数学学习中的一种新形式,它为学生提供了自己学习的空间,有助于学生了解数学在实际生活中的应用,体会数学与日常生活及其他学科的联系一、选择题1已知a,b是给定的正数,则的最小值为()A2a2b2B2abC(2ab)2D4ab答案C解析(sin2cos2)2(2ab)2,当且仅当sin cos时,等号成立故的最小值为(2ab)2.2已知a,b,c为正数且abc3,则的最小值为()A4B4C6D6答案C解析a,b,c为正数,ab.同理bc,ca,相加得()2(bca)6,即6,当且仅当abc时取等号3已知(x1)2(y2)24,则3x4y的最大值为()A21B11C18D28答案A解析根据柯西不等式,得(x1)2(y2)232423(x1)4(y2)2(3x4y11)2,(3x4y11)2100.可得3x4y21,当且仅当时取等号4已知x,y,z是非负实数,若9x212y25z29,则函数u3x6y5z的最大值是()A9B10C14D15答案A解析(3x6y5z)212()2()2(3x)2(2y)2(z)29(9x212y25z2)81,当且仅当3x2yz时,等号成立故u3x6y5z的最大值为9.5已知x,y,zR,且1,则x的最小值为()A5B6C8D9答案D解析由柯西不等式知,(111)29,因为1,所以x9.即x的最小值为9.6设c1,c2,cn是a1,a2,an的某一排列(a1,a2,an均为正数),则的最小值是()AnB.C.D2n答案A解析不妨设a1a2an0,则,由排序不等式知,a1a2ann.二、填空题7设a,b,c,d,m,nR,P,Q,则P,Q的大小关系为_答案PQ解析由柯西不等式得PQ,当且仅当时,等号成立,PQ.8设x,y,zR,若x2y2z24,则x2y2z的最小值为_答案6解析由柯西不等式,得(x2y2z2)12(2)222(x2y2z)2,故(x2y2z)24936.当且仅当k,k时,上式取得等号,当k时,x2y2z取得最小值6.9已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x,y,z,则x,y,z所满足的关系式为_,x2y2z2的最小值是_答案xyz33解析利用三角形面积相等,得2(xyz)(2)2,即xyz3.由(111)(x2y2z2)(xyz)29,得x2y2z23,当且仅当xyz1时取等号10若a,b,cR,设xa3b3c3,ya2bb2cc2a,则x,y的大小关系为_答案xy解析取两组数a,b,c;a2,b2,c2.不管a,b,c的大小顺序如何,a3b3c3都是顺序和,a2bb2cc2a都是乱序和,a3b3c3a2bb2cc2a.三、解答题11(2018江苏)若x,y,z为实数,且x2y2z6,求x2y2z2的最小值解由柯西不等式,得(x2y2z2)(122222)(x2y2z)2.因为x2y2z6,所以x2y2z24,当且仅当时,不等式取等号,此时x,y,z,所以x2y2z2的最小值为4.12已知a,b,c为正数,求证:abc.证明考虑到正数a,b,c的对称性,不妨设abc0,则,bccaab,由排序不等式知,顺序和乱序和,即abc.a,b,c为正数,两边同乘以,得abc.13设a,b,c,dR,令S,求证:1S2.证明首先证明(ab0,m0)因为0,所以S2,所以S2.又S1,所以1S2.四、探究与拓展14已知5a23b2,则a22abb2的最大值为_答案1解析(a)2(b)22(ab)2a22abb2,当且仅当5a3b,即a,b时取等号(5a23b2)a22abb2.a22abb2(5a23b2)1.a22abb2的最大值为1.1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家访工作计划怎么写范文大全(5篇)
- 固态废旧物合同范本
- 老师新学期个人工作计划表怎么写(5篇)
- 全球旅游市场调研报告
- 2025年国企煤矿考试题及答案
- 2025年圆形推理题库及答案
- 2025年上半年教师资格证幼儿综合素质真题及答案
- 2025年山西省人民法院聘用书记员考试试题及答案
- 2025年山东省潍坊市事业单位工勤技能考试题库(含答案)
- 传统制造企业新质生产力
- 燃气有机热载体锅炉安装使用说明书
- 艾滋病梅毒丙肝检测与解释
- 400T三一履带吊性能表
- GB/T 22076-2008气动圆柱形快换接头插头连接尺寸、技术要求、应用指南和试验
- JJG(新) 32 2022 工作用数字温度计检定规程
- 公共伦理学电子教案
- 埃美柯阀门检验报告汇总-391黄铜调节阀
- 500kV变电站屋外架构组立吊装工程施工安全技术交底
- 三字经全文带拼音注释打印版
- (完整版)污水处理站施工方案
- 小型展览馆建筑设计精品ppt
评论
0/150
提交评论