微积分思想在中学数学中的应用.doc_第1页
微积分思想在中学数学中的应用.doc_第2页
微积分思想在中学数学中的应用.doc_第3页
微积分思想在中学数学中的应用.doc_第4页
微积分思想在中学数学中的应用.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕 业 论 文(设 计)论文(设计)题目:微积分思想在中学数学中的应用姓 名 陈东 学 号 11111022037 院 系 数学与信息科学学院 专 业 信息与计算科学 年 级 2011级 指导教师 庄乐森 2015 年 4 月 21日 目 录摘 要1ABSTRACT2第1章 中学数学中的微积分思想31.1 中学数学与微积分的关系31.2 微积分的基本思想方法31.3 微积分的几种基本思想31.3.1 极限思想31.3.2 化归思想41.3.3 函数思想41.3.4 数形结合思想5第2章 微积分的基本应用62.1 关于函数单调性的讨论62.2 函数极值与最值相关问题讨论72.3 函数的变化性态与图像关系讨论82.4 关于用微积分解方程问题的讨论92.5 关于不等式证明的讨论112.6 关于曲线的切线及求法的讨论12第3章 结语和展望13参考文献14致 谢15新乡学院本科毕业论文(设计)摘 要本文主要以微积分思想为基础来讨论微积分与中学数学之间的联系,介绍了常见的几种微积分思想,通过导数,来研究函数的单调性与极值问题,以及验证如何利用导数来证明不等式等问题.以此得到,将微积分应用到中学数学中,能够起到化难为易的重要作用,而且把微积分思想与中学数学之间的联系也需要我们进一步去研究与探讨.关键词:微积分;导数;不等式;最值ABSTRACTThis paper is mainly based on the idea of calculus to discuss links between calculus and middle school mathematics, it introduces several common calculus thought, through derivatives, to study the problem and Extremes monotonic function, and verify how to use derivatives proof of inequality and other issues. in this get, will be applied to high school calculus mathematics, it can play an important role in anything easy, and the contact calculus between thought and middle school mathematics, we also need to go further study and discussion.Keywords: Calculus; Derivative; Inequality; The most value第1章 中学数学中的微积分思想微积分思想应用到中学数学中的方面有很多:求函数的极值与最值问题、函数单调性问题、以及利用导数证明不等式和恒等式,它们都是数学最基础的知识,通过微积分可以让问题更简单的解答出来,从而使学生更容易的去接受和理解中学数学.1.1 中学数学与微积分的关系初等数学是高等数学的基础,二者有着本质上的联系.将微积分运用到中学数学中也可以使得本质得以体现,进而更容易掌握初等数学.早在1983年,四川的孟季和老师就针对1978年的高中数学大纲编著了中学微积分教材教法1一书,对当时大纲中所列出的中学微积分内容进行了教学和教法的探讨,而且把微积分思想运用到初中数学中也能够为以后学习微积分打下一个坚固的基础.1.2 微积分的基本思想方法微积分思想方法在解决问题上一般分为变化率问题与积累性问题,两个问题虽然本质上看来有所不同,但在解决问题上却有异曲同工之处,都是讨论在局部范围的内近似状态,最后通过极限方法使近似状态精确到某一单点值,这就是所谓的微积分思想,微积分思想主要以极限为工具,对数学中的函数、不等式等问题进行解析,而且微积分能够运用到初等数学中的方法有很多:“以直代曲”、“局部刻画整体”、“极限方法”,但是在中学数学中一般偏重于对极限的运用与探讨.1.3 微积分的几种基本思想1.3.1 极限思想极限思想是数学思想的基础,它主要是讨论运用有限的值来描述无限的变化状态,通过多次运算把估算出的近似值转化到相对准确值上,这样也就充分体现出极限思想的本质,他可以讨论变化趋势的“无穷小”过程,同时也揭露了“曲线性与直线性”“量变与质变”“近似于精确”等一些对立统一而又能相互转化的辩证关系.例1 ?我们知道,两边同时乘以3就可以得到,这样我们就看左边是一个有限的数,右边是无限的数,所以.同样的想法在求曲边梯形面积时,就要运用到“化整为零”、“以直代曲”、“取极限”等思想,首先把曲边梯形分割成若干个小梯形面积,对每个小梯形进行面积近似求值,最后求和取到近似值,而且分割的越细面积值就越接近曲边梯形面积,最后取极限值,问题得以解决.1.3.2 化归思想在数学问题上,一般都会运用到化归思想,它是解决问题的一个转折点,通过把问题转化,变向的去解决问题的思想方法,也是让问题通过更方便的途径或方法解决出来的另一种形式,起到化复杂为简单,化抽象为具体,化生为熟的作用,化归思想可以说在解决问题时是无处不在的,在问题与问题之间进行相互转化,最后求得原问题的答案,对于化归思想来说它的重要本质主要体现在“转化”,能够做到把复杂转化成简单,使问题更一目了然的展现出来.在数学问题上我们最常见几个利用化归原理来解答问题的例子:对反三角函数进行求导;复合函数求导,通常将其转化成最基本的导数,然后根据四则运算,求其结果,最后得到结果;求曲边形面积,将其转化成极限、积分问题.如在求曲边梯形面积时直接去求解,相对比较更繁琐、困难,但是若把它分割成若干个近似无限个小梯形,去求面积的总和,最后极限求值,这样问题就能更简单的解答出来.而且化归思想同时运用到数学建模上也是比较常见的,在设计模型时,就可以把抽象化具体,寻找实际的例子进行分析,最后转化到模型中.1.3.3 函数思想函数思想是数学中最重要的部分,也是主体部分,它的主体思想与辩证唯物主义是有密切关系的,在讨论事物的相对性,以及一一对应的关系时,不存在绝对性问题,只存在相对性关系,函数思想以变量关系为本质,讨论自变量、因变量以及函数值之间的对应关系.在中学数学中,我们了解熟悉基本初等函数有以下六类:(1)常量函数;(2)幂函数;(3)指数函数;(4)对数函数;(5)三角函数;(6)反三角函数.而且在高等数学中也会有很多的证明需要通过函数来完成,如:柯西中值定理,拉格朗日中值定理,罗尔定理,可见函数思想的重要性以及广泛的应用.中学中函数思想在数学中与其相关最密切的应该是微积分,因为函数中的很多问题都可以通过微积分中的导数来解决,如:解多元函数;讨论函数的单调性;计算函数的极值与最值;判断函数是否连续等问题.我们知道,通过导数来解析函数思想是很有意义的,设某函数在一个规定的区间内成立,那么不难得到区间内的每一个点都有相对应的导数,这样在该区间内就可以定义一个新的函数(即为导数),通过微积分思想我们可以了解到函数里包含导函数,原函数,在解决问题时,我们通常都是对原函数进行解析,但这样做可能变得更繁琐,因此,我们运用化归思想,将其进行转化变形,成为导函数,然后再解决,这样就是问题得以解决.1.3.4 数形结合思想所谓的数形结合思想就是利用图形把相应的数量关系有效地表达出来,做到数与图相结合,从而解决问题的本质,可以说是数学领域一项重要且基础的数学思想,它运用几何关系去表达数量关系,使数与形完美的结合,把抽象的问题或思维具体化,达到转难为易的程度,在微积分的学习中,用导数去证明函数的单调性以及用导数去求曲线的切线方程,这些都涉及到了数形结合思想,而且,对于初中学生来讲,刚刚接触初等数学知识,还不能很好地运用与掌握,但是如果能够把图形运用上,那么问题以及结果就更直观的展现出来,数与形相结合更有利于他们的起步,同时也为高等数学打下良好的基础.第2章 微积分的基本应用2.1 关于函数单调性的讨论定义 2.1:设函数在区间上有定义,如果对于区间内的任意两点,满足:(1)当,恒有则称函数在开区间单调递减;(2)当,恒有则称函数在开区间单调递增;在解决中学数学中函数问题时,一般都会用定义法,但是遇到比较复杂的函数反而不容易判断,如:反三角函数,复合函数,但是运用导数,反而使得问题更简单,更能让学生接受.利用导数来判断函数单调性问题的方法大致有以下几个步骤: (1)首先确定函数的定义域;(2)算出下函数的解,并判断是否是可导点,同时把定义域根据这些点分成多个子区间;(3)确定函数在不同的子区间内的符号,根据正、负来判断函数的单调性.例2 判断函数的单调性.分析 本题主要考查函数的单调性,解决一般的函数大致都会用定义法,但是本题是幂函数,用定义法反而更麻烦,因此我们对函数进行一阶求导,求出导点与不可导点,然后根据导函数的符号判断函数的单调性.解 首先易知函数的定义域为,令得到并且是的不可导点.所以可以将定义域分为三个子区间,则画表如下:因此在区间函数是递增的,在区间是递减的.2.2 函数极值与最值相关问题讨论可以说,函数的极值与最值问题一直都是大家讨论的热点话题,也是中学数学中一条重要的知识点,极值与最值可以反映出函数的特性.在很多应用中都有涉及,如:求讨论多元函数问题.若函数在闭区间上连续,则在定区间上一定有最大、最小值,这就为我们求连续函数的最大值、最小值提供了理论保证.具体的若函数的最大(小)值点在开区间内,则必定是的极大(小)值点.又若在点可导,则点还是一个稳定点,所以我们只要比较在所有稳定点、不可导点和区间端点上的函数值,就能从中找到在定区间上的最大值和最小值.下面举例解释这个过程.例3 求函数在闭区间上的最大值与最小值.解 函数在闭区间上连续,故必存在最大最小值.由于因此,又因为,所以由导数极限定理推知函数处不可导,令可得,不可导点,以及端点的函数值.由此函数在处取得最小值,在和处去的最大值.2.3 函数的变化性态与图像关系讨论 在中学数学中,我们最常见的几种函数图像基本上都是通过描点法来完成的,然而这样的方法得到的图像不一定能够明了的反映出曲线在一定的区间内的性态,这也是描点法的不足之处,但是学习了导数后,可以把导数应用到函数中去,利用导数来判断函数的单调、极值、最值、凹凸性等问题,进而也可以准确的画出函数的变化图像,但是对于一些初等函数而言,取点不够多,就会导致图像的错误,但是如果点取的很多,很浪费时间.对此类问题的例子有很多如:,正确的图像应为2-2,但是2-3确是用描点法得到的错误图像. 图2.1 图2.2所以图像的准确性直接关系着函数变化性的具体体现.作函数图像一般程序:(1)求函数的定义域;(2)考察函数的奇偶性;(3)求函数的某些特殊点,如:与两个坐标轴的交点,不连续点,不可导点等;(4)计算出函数曲线与坐标轴的交点坐标,以及极值点、拐点、稳定点的坐标; (5)把上述的重要点的坐标描到直角坐标系中,并画出渐近线,最后讨论曲线的变化性态.例4 作出函数的图形.解 首先判断出函数的定义域,并且由题可知与轴的交点为.,令,的驻点,;令,得驻点,;令,得.列表如下:极大值拐点极小值作图像如下: 图2.32.4 关于用微积分解方程问题的讨论在解方程中尤其是超越方程,凭借以往的图像法去解决问题,往往会导致误差太大,使得答案不准确,因此,我们改用通过微积分,利用函数的单调性以及切线法来解方程.例5 用牛顿切线法求方程的近似解,使误差不超过0.01.分析 首先通过构造函数,然后对函数进行求导,求出值,然后来判断是不是极值点,通过运算来得出近似解.解 设.求得导数容易检验为极大值点,为极小值点,并且,又因为,所以方程有且只有一个根.如图2.4所示,从点作切线与轴相交于我们来估计以代替的误差:在上的最小值为,而,由误差计算公式可得 , 而,因此尚不合要求.图2.4再在点作切线,求得,由于,此时,因此取已能所要求的精确度.2.5 关于不等式证明的讨论不等式是研究数学的重要工具,研究不等式以及不等式的证明两个问题也是数学领域的一个重大突破,相对来说,前者较易,后者较难,利用导数研究函数的单调性,再有单调性来证明不等式是函数、导数、不等式综合的一个难点,也是近几年高考的热点,同时证明不等式也是学生的弱点与难点,而利用微积分的方法和知识,将不等式问题转化为函数问题,进而通过求导数法判断函数的单调性或最值,再利用函数单调性或最值来证明不等式,可简化不等式的证明过程,降低技巧性.那么以下则介绍以下用导数证明不等式的一般思路:(1) 构造函数;(2) 通过对函数的运算,求出函数在区间内的单调性;(3) 通过函数单调性对不等式进行证明;(4)用函数的最值证明不等式.例6 已知为正整数,且,求证.分析 直接验证无从下手,则对不等式进行化简变形即可得到,然后验证不等式是否成立.证明 构造函数,当时,求导得,所以在上是减函数,由知,即或所以,即.从此例可以看到,导数作为证明不等式的工具,方法简单、实用.而且渗透了很强的数学思想.除了不等式的证明外,我们往往也会遇到恒等式的证明问题,对此也可以通过导数的方法来进行证明.例7 求证 .分析 此题主要考查对二项式定理求导的理解与运用.证明 因为 ,对等式两边求导得:,令即得:.2.6 关于曲线的切线及求法的讨论例8(2013年福建卷 理科)已知函数,验证曲线在点处是否存在切线方程并算出.分析 此题验证如何来求曲线的切线方程,怎样运用导数进行计算.解 函数的定义域为, ,因为 ,所以我们可以得到在点的切线方程为,即 .综上所述,就可以证明出通过导数来求曲线的切线是一个很好的解题思想和方法.第3章 结语和展望本论文研究的主要内容是:讲述微积分思想的意义以及作用,直接深入本文主旨提出微积分思想与中学数学的联系,通过举例证明在初等数学中的广泛应用,并且详细介绍了微积分的主要几种思想,然后在通过实际例子的解答与验证,了解到这些思想的相关应用,从而得到微积分思想在中学数学中的广泛应用,如:微积分关于函数的单调性、求函数的极值、最大值与最小值、函数的变化形态及作图、微积分在解方程中的应用、不等式的证明、曲线的切线及求法.用微积分去处理中学数学上的问题,能够起到化难为易的重要作用,而且能够让学生更容易的去接受,对于刚接触初等数学的学生,可以起到引导的的作用,同时也为以后更好的学习高等数学打下稳定的基础,微积分思想运用到中学数学中的知识也不仅仅只有这么多,如求不定规则图形的面积、讨论导数在数列中的应用、在几何上的应用、求方程的解、因式分解等很多问题上,它能够把问题通过转化变得简单,起到“化曲为直”的作用,而且在近几年的高考中也逐渐侧重了对微积分的考查与运用,在初等数学与高等数学之间,微积分思想起到承上启下的重要作用,同时也能够开拓师生的思路,掌握教材的能力,微积分思想在中学数学中的作用与地位主要体现在以下几个方面:(1)了解微积分的相关知识,能够增强学生的运算能力以及逻辑思维能力与空间何想象能力;(2)能够帮助学生提高解决问题的能力,为学生打下良好的数学基础;(3)微积分运用到初中数学中能够起到化难为易,化抽象为具体的重要转化作用.综上所述,都足以表明微积分思想在中学数学中的重要性,也使得这一重要的数学思想的本质得以体现.本文章主要介绍了微积分思想在中学数学中的应用,但是它也在其他的领域有所应用,如:在天文学上对经纬度的测量,从而进行了相关的研究:(1)研究黑洞与其他行星;(2)月食现象产生的原因;(3)计算气候变化周期.微积分作为人类文明史上宝贵的精神财富15,数学史上的重要里程碑,也是数学家们辛劳的结晶,掌握和了解微积分,能够增强学生对数学的理解与运用能力,所以说微积分思想不但是数学史上的创举也是人类发展史上的重要的一部分.参考文献1孟季和.中学微积分教材教法M.重庆:重庆出版社,1983:73221.2曹发祯.微积分在中学数学中的应用M.广东教育出版社,19913 人民教育出版社课程教材研究所.普通高中课程标准实验教科书数学 (选修22).人民教育出版社.2009.4 丁向前.微积分思想在中学数学中的渗透J.数学教学研究,2008,27(8):45.5 俞宏毓.例说微积分知识在解决中学数学问题中的应用J.高等函授学报(自然科学版),2006,20(2):3236.6 贤锋.浅析微积分理论在中学数学的简单应用J.引进与咨询,2000(1):6465.7 魏本成,吴中林.微积分在中学数学中的应用J.天中学刊,2001,16(5):5455.8 吴向群,庄认训.微积分在中学数学中的应用J.青海师专学报(自然学科),2002,22(5):7778.9 徐岳灿.探索微积分在中学数学中的必要性J.上海中学数学,2011,64(6):2729.10 包建廷.微积分在不等式中的应用J.承德民族师专学报,2003,23(2):2730.11 肖新义,肖尧.微积分方法在初等数学中的应用研究J.和田师范专科学校学报2009,28(5):1516.12 徐岳灿.探索微积分在中学数学中的必要性J.上海中学数学,2011,64(6):2729.13 丁向前.微积分思想在中学数学中的渗透J.数学教学研究,2008,27(8):45.14 李霞.浅论数学分析的原理与方法在中学数学中的应用J.牡丹江教育学院学报,2006,95(1):8384.15 王昆扬.给中学生讲好微积分基本知识J.数学通报,2001(6):2324.15新乡学院本科毕业论文(设计)致 谢大学的四年生活转瞬即逝,回首过去的日子,感觉收获到很多东西,当完成这篇文章的时候,我感慨万分.首先真诚的感谢我的论文指导老师庄乐森老师,他能够在百忙之中帮我指导论文的修改与审查,同时,我也很感谢大学四年内教过我的老师们,是你们一丝不苟的工作精神与职业责任心深深地感染了我,是你们在教会我很多的数学知识与文学上的知识,是你们的启迪让我对知识探求的渴望,最后,我也很感谢陪伴我身边的朋友,是你们在我困难的时候帮助我,鼓励我,在我困惑的时候给予我宝贵的意见与建议,谢谢你们曾陪我走过,我的大学生活因为有你们而变得充实、丰富而又多彩.14薃肀莂蒃袂肀肂虿袈聿芄薂螄肈莇螇蚀肇葿薀罿肆腿莃袅肅芁薈螁膄莃莁蚇膄肃薇薃膃芅荿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿腿节蒆羈芈莄蚁袄芈蒆蒄螀芇膆蚀蚆袃莈蒃蚂袂蒁螈羀袁膀薁袆袁芃螆螂袀莅蕿蚈衿蒇莂羇羈膇薇袃羇艿莀蝿羆蒂薆螅羅膁蒈蚁羅芄蚄罿羄莆蒇袅羃蒈蚂螁羂膈蒅蚇肁芀蚁薃肀莂蒃袂肀肂虿袈聿芄薂螄肈莇螇蚀肇葿薀罿肆腿莃袅肅芁薈螁膄莃莁蚇膄肃薇薃膃芅荿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿腿节蒆羈芈莄蚁袄芈蒆蒄螀芇膆蚀蚆袃莈蒃蚂袂蒁螈羀袁膀薁袆袁芃螆螂袀莅蕿蚈衿蒇莂羇羈膇薇袃羇艿莀蝿羆蒂薆螅羅膁蒈蚁羅芄蚄罿羄莆蒇袅羃蒈蚂螁羂膈蒅蚇肁芀蚁薃肀莂蒃袂肀肂虿袈聿芄薂螄肈莇螇蚀肇葿薀罿肆腿莃袅肅芁薈螁膄莃莁蚇膄肃薇薃膃芅荿螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁薇蚇袇肃莀薃羆膅薆葿羆芈荿螇羅羇膁螃羄膀莇虿羃节芀薅羂羂蒅蒁羁肄芈螀羀膆蒃蚆肀芈芆薂聿羈蒂蒈肈肀芅袆肇芃薀螂肆莅莃蚈肅肅薈薄蚂膇莁蒀蚁艿薇蝿螀罿荿蚅蝿肁薅薁螈膄莈薇螈莆膀袆螇肆蒆螁螆膈艿蚇螅芀蒄薃螄羀芇葿袃肂蒃螈袂膄芅蚄袂芇蒁蚀袁肆芄薆袀腿蕿蒂衿芁莂螁袈羁 荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆袂腿莁螅肄羂莇螄螄芇芃螃袆肀薂螂羈芅蒈螂肁肈莄袁螀芄芀袀袂肇薈衿羅节蒄袈膇肅蒀袇袇莀莆蒄罿膃节蒃肁荿薁蒂螁膁蒇蒁袃莇莃薀羆膀艿薀肈羃薈蕿袈膈薄薈羀肁葿薇肂芆莅薆螂聿芁薅袄芅薀薄羇肇蒆蚄聿芃莂蚃螈肆芈蚂羁芁芄蚁肃膄薃蚀螃荿葿虿袅膂莅蚈羇莈芁蚈肀膁蕿螇蝿羃蒅螆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论