




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.导数的综合应用(含答案)(高二)1.(15北京理科)已知函数()求曲线在点处的切线方程;()求证:当时,;()设实数使得对恒成立,求的最大值【答案】(),()证明见解析,()的最大值为2.试题解析:(),曲线在点处的切线方程为;()当时,即不等式,对成立,设,则,当时,故在(0,1)上为增函数,则,因此对,成立;()使成立,等价于,;,当时,函数在(0,1)上位增函数,符合题意;当时,令,-0+极小值,显然不成立,综上所述可知:的最大值为2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.2(15年安徽理科)设函数.(1)讨论函数内的单调性并判断有无极值,有极值时求出极值;(2)记上的最大值D;(3)在(2)中,取【答案】()极小值为;();()1.试题解析:(),.,.考点:1.函数的单调性、极值与最值;2.绝对值不等式的应用.3.(15年福建理科)已知函数,()证明:当;()证明:当时,存在,使得对()确定k的所以可能取值,使得存在,对任意的恒有【答案】()详见解析;()详见解析;()【解析】试题分析:()构造函数只需求值域的右端点并和0比较即可;()构造函数即,求导得,利用导数研究函数的形状和最值,证明当时,存在,使得即可;()由()知,当时,对于故,则不等式变形为,构造函数,只需说明,易发现函数在递增,而,故不存在;当时,由()知,存在,使得对任意的任意的恒有,此时不等式变形为,构造,易发现函数在递增,而,不满足题意;当时,代入证明即可试题解析:解法一:(1)令则有当,所以在上单调递减;故当时,即当时,(2)令则有当,所以在上单调递增,故对任意正实数均满足题意.当时,令得取对任意恒有,所以在上单调递增,即.综上,当时,总存在,使得对任意的恒有(3)当时,由(1)知,对于故,令,则有故当时,,在上单调递增,故,即,所以满足题意的t不存在.当时,由(2)知存在,使得对任意的任意的恒有此时,令,则有故当时,,在上单调递增,故,即,记与中较小的为,则当,故满足题意的t不存在.当,由(1)知,令,则有当时,,所以在上单调递减,故,故当时,恒有,此时,任意实数t满足题意.综上,.解法二:(1)(2)同解法一.(3)当时,由(1)知,对于,故,令,从而得到当时,恒有,所以满足题意的t不存在.当时,取由(2)知存在,使得.此时,令,此时,记与中较小的为,则当,故满足题意的t不存在.当,由(1)知,令,则有当时,,所以在上单调递减,故,故当时,恒有,此时,任意实数t满足题意综上,.考点:导数的综合应用 4.(15年新
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中石油俄罗斯协议书
- 电焊机装配工合规风险规避能力考核试卷及答案
- 遗产继承分割协议书
- 外贸合作协议书
- 风机装配调试工工具生命周期管理考核试卷及答案
- 牧草栽培工岗位职业健康、安全、环保技术规程
- 2025办公室租赁合同范本(标准版)
- 业务知识培训中心课件
- 2025年上海车牌买卖合同范本官方版
- 网络舆情培训课件
- 冰雪场馆建设施工方案
- 食用菌科普课件模板
- 各种引流管的固定及护理
- 核心高考高频688词汇(高考高频词汇)
- 国开2025年人文英语4写作形考答案
- AIGC艺术设计 课件全套 第1-8章 艺术设计的新语境:AI的介入 -AIGC艺术设计的思考与展望
- 老年教育课程体系2025年优化与探究式教学模式实践报告
- 学堂在线 遥测原理 期末考试答案
- 2025年湖南省市场监督管理局下属事业单位招聘考试笔试试题【答案】
- 针灸调理养生在心脑血管疾病防治中的应用研究与实践
- 四年级上册面积单位换算题100道
评论
0/150
提交评论