![[高一数学]浅谈二次函数在高中阶段的应用.doc_第1页](http://file.renrendoc.com/FileRoot1/2019-1/19/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a5/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a51.gif)
![[高一数学]浅谈二次函数在高中阶段的应用.doc_第2页](http://file.renrendoc.com/FileRoot1/2019-1/19/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a5/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a52.gif)
![[高一数学]浅谈二次函数在高中阶段的应用.doc_第3页](http://file.renrendoc.com/FileRoot1/2019-1/19/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a5/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a53.gif)
![[高一数学]浅谈二次函数在高中阶段的应用.doc_第4页](http://file.renrendoc.com/FileRoot1/2019-1/19/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a5/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a54.gif)
![[高一数学]浅谈二次函数在高中阶段的应用.doc_第5页](http://file.renrendoc.com/FileRoot1/2019-1/19/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a5/ae8f03b7-bcbf-4b25-93d9-8b65efdaa6a55.gif)
已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浅谈二次函数在高中阶段的应用 在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。 一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:AB,使得集合B中的元素y=ax2+bx+c(a0)与集合A的元素X对应,记为f(x)= ax2+ bx+c(a0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知f(x)= 2x2+x+2,求f(x+1)这里不能把f(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型:设 f(x+1)=x24x+1,求f(x)这个问题理解为,已知对应法则f下,定义域中的元素x+1的象是x24x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。f(x+1)=x24x+1=(x+1)26(x+1)+6,再用x代 x+1得f(x)=x26x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 (t)=(t-1)24(t-1)+1=t26t+6从而f(x)= x26x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(,b/2a 及b/2a ,+)上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x1|1 (2)y=|x21| (3)= x2+2|x|1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型设 f(x)=x22x1在区间t,t+1上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:f(x)=x22x1=(x1)22,在x=1时取最小值2当1t,t+1即0t1,g(t)=2当t1 时,g(t)=f(t)=t22t1当t0时,g(t)=f(t+1)=t22 t22, (t1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x25x+6(-3x1),求该函数的值域。 三、二次函数的知识,可以准确反映学生的数学思维:类型:设二次函数?(x)=ax2+bx+c(a0)方程?(x)x=0的两个根 x1,x2满足0x1x21a .()当X(0,x1)时,证明X?(x)x1.()设函数?(x)的图象关于直线x=x0对称,证明x0 x2 .解题思路:本题要证明的是x?(x),?(x)x1和x0 x2 ,由题中所提供的信息可以联想到:?(x)=x,说明抛物线与直线y=x在第一象限内有两个不同的交点;方程?(x)x=0可变为ax2+ (b1)x+1=0,它的两根为x1,x2,可得到x1,x2与a.b.c之间的关系式,因此解题思路明显有三条图象法利用一元二次方程根与系数关系利用一元二次方程的求根公式,辅之以不等式的推导。现以思路为例解决这道题:()先证明xf(x),令f(x)=f(x)-x,因为 x1,x2是方程f(x)-x=0的根,f(x)=ax2+bx+c,所以能f(x)=a(xx1)(xx2)因为0x1x2,所以,当x(0,x1)时, xx10, xx20,又a0,因此f(x)0,即f(x)-x0.至此,证得xf(x)根据韦达定理,有 x1x2=ca 0x1x21a ,c=ax1x2x=f(x1), 又c=f(0),f(0)f(0),所以当x(0,x1)时f(x)f(x1)=x1,即xf(x)0)函数?(x)的图象的对称轴为直线x= b2a ,且是唯一的一条对称轴,因此,依题意,得x0=b2a ,因为x1,x2是二次方程ax2+(b1)x+c=0的根,根据违达定理得,x1+x2=b-1a ,x21a 0,x0=b2a =12 (x1+x21a )x2 ,即x0=x2 .二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。 在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。 一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:AB,使得集合B中的元素y=ax2+bx+c(a0)与集合A的元素X对应,记为f(x)= ax2+ bx+c(a0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知f(x)= 2x2+x+2,求f(x+1)这里不能把f(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型:设 f(x+1)=x24x+1,求f(x)这个问题理解为,已知对应法则f下,定义域中的元素x+1的象是x24x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。f(x+1)=x24x+1=(x+1)26(x+1)+6,再用x代 x+1得f(x)=x26x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 (t)=(t-1)24(t-1)+1=t26t+6从而f(x)= x26x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(,b/2a 及b/2a ,+)上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x1|1 (2)y=|x21| (3)= x2+2|x|1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型设 f(x)=x22x1在区间t,t+1上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:f(x)=x22x1=(x1)22,在x=1时取最小值2当1t,t+1即0t1,g(t)=2当t1 时,g(t)=f(t)=t22t1当t0时,g(t)=f(t+1)=t22 t22, (t1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x25x+6(-3x1),求该函数的值域。 三、二次函数的知识,可以准确反映学生的数学思维:类型:设二次函数?(x)=ax2+bx+c(a0)方程?(x)x=0的两个根 x1,x2满足0x1x21a .()当X(0,x1)时,证明X?(x)x1.()设函数?(x)的图象关于直线x=x0对称,证明x0 x2 .解题思路:本题要证明的是x?(x),?(x)x1和x0 x2 ,由题中所提供的信息可以联想到:?(x)=x,说明抛物线与直线y=x在第一象限内有两个不同的交点;方程?(x)x=0可变为ax2+ (b1)x+1=0,它的两根为x1,x2,可得到x1,x2与a.b.c之间的关系式,因此解题思路明显有三条图象法利用一元二次方程根与系数关系利用一元二次方程的求根公式,辅之以不等式的推导。现以思路为例解决这道题:()先证明xf(x),令f(x)=f(x)-x,因为 x1,x2是方程f(x)-x=0的根,f(x)=ax2+bx+c,所以能f(x)=a(xx1)(xx2)因为0x1x2,所以,当x(0,x1)时, xx10, xx20,又a0,因此f(x)0,即f(x)-x0.至此,证得xf(x)根据韦达定理,有 x1x2=ca 0x1x21a ,c=ax1x2x=f(x1), 又c=f(0),f(0)f(0),所以当x(0,x1)时f(x)f(x1)=x1,即xf(x)0)函数?(x)的图象的对称轴为直线x= b2a ,且是唯一的一条对称轴,因此,依题意,得x0=b2a ,因为x1,x2是二次方程ax2+(b1)x+c=0的根,根据违达定理得,x1+x2=b-1a ,x21a 0,x0=b2a =12 (x1+x21a )f(0),所以当x(0,x1)时f(x)f(x1)=x1,即xf(x)0)函数?(x)的图象的对称轴为直线x= b2a ,且是唯一的一条对称轴,因此,依题意,得x0=b2a ,因为x1,x2是二次方程ax2+(b1)x+c=0的根,根据违达定理得,x1+x2=b-1a ,x21a 0,x0=b2a =12 (x1+x21a )x2 ,即x0=x2 。二次函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自动化语音情感分析系统创新创业项目商业计划书
- 物联网智能家居安全创新创业项目商业计划书
- 汽车电子照明控制系统创新创业项目商业计划书
- 汽车资讯网站创新创业项目商业计划书
- 小学三年级校园安全教育计划
- 人教版四年级下册语文词语积累计划
- 汽车制造设备危险源辨识清单及预控措施
- 2025版学校人工费施工合同范本
- 2025版土地互换及乡村振兴战略实施合作协议范本
- 2025版人力资源战略规划与实施顾问合同
- 藻类分子机制解析与调控网络构建-洞察阐释
- 柴油运输配送管理制度
- T/CAPA 009-2023面部埋线提升技术操作规范
- 助教合同协议书范本
- DB3707T 120-2024无特定病原凡纳滨对虾种虾循环水养殖技术规范
- 2025光伏项目施工合同范本
- 阶梯定价合同协议
- 公司走帐协议书样板
- 《脑机接口技术与应用》课程教学大纲
- 2025年湖南铁道职业技术学院单招职业适应性测试题库带答案
- 蒸汽管道下穿铁路施工方案
评论
0/150
提交评论