




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5章 图形的性质【精学】考点一、比例线段 1、比例线段的相关概念如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是 ,或写成a:b=m:n在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段若四条a,b,c,d满足 或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项。2、比例的性质(拓展)(1)基本性质a:b=c:dad=bca:b=b:c(2)更比性质(交换比例的内项或外项) (交换内项) (交换外项) (同时交换内项和外项)(3)反比性质(交换比的前项、后项):(4)合比性质:(5)等比性质:3、黄金分割把线段AB分成两条线段AC,BC(ACBC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=AB0.618AB考点二、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例。推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。考点三、相似三角形1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。2、相似三角形的基本定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。用数学语言表述如下:DEBC,ADEABC相似三角形的等价关系:(1)反身性:对于任一ABC,都有ABCABC;(2)对称性:若ABCABC,则ABCABC(3)传递性:若ABCABC,并且ABCABC,则ABCABC。3、三角形相似的判定(1)三角形相似的判定方法定义法:对应角相等,对应边成比例的两个三角形相似平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法以上各种判定方法均适用定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。4、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。5、相似多边形(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比(或相似系数)(2)相似多边形的性质相似多边形的对应角相等,对应边成比例相似多边形周长的比、对应对角线的比都等于相似比相似多边形中的对应三角形相似,相似比等于相似多边形的相似比相似多边形面积的比等于相似比的平方6、位似图形如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。【巧练】题型一、平行线分线段成比例【例1】(2016山东济宁)如图,ABCDEF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于【答案】【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论【点评】考查平行线分线段成比例,能够从图中找到对应线段是解题的关键。题型二、相似三角形及其判定例2(2015永州)如图,下列条件不能判定ADBABC的是()AABD=ACB BADB=ABCCAB2=ADAC D=【答案】D分析:根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似题型三、相似三角形的性质例3(2016巴中)如图,点D、E分别为ABC的边AB、AC上的中点,则ADE的面积与四边形BCED的面积的比为()A1:2 B1:3 C1:4 D1:1【答案】B【分析】证明DE是ABC的中位线,由三角形中位线定理得出DEBC,DE=BC,证出ADEABC,由相似三角形的性质得出ADE的面积:ABC的面积=1:4,即可得出结果【解答】解:D、E分别为ABC的边AB、AC上的中点,DE是ABC的中位线,DEBC,DE=BC,ADEABC,ADE的面积:ABC的面积=()2=1:4,ADE的面积:四边形BCED的面积=1:3;故选:B【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键题型四、相似多边形与位似图形例4(2016东营)如图,在平面直角坐标系中,已知点A(3,6),B(9,3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(1,2) B(9,18) C(9,18)或(9,18) D(1,2)或(1,2)【答案】D【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k进行求解故选D【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k题型五、相似三角形的应用例5.(2015甘肃天水)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知ABBD,CDBD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是 米【答案】8【分析】首先证明ABPCDP,可得=,再代入相应数据可得答案AB=2米,BP=3米,PD=12米,=,CD=8米,故答案为:8【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例【限时突破】1(2016哈尔滨)如图,在ABC中,D、E分别为AB、AC边上的点,DEBC,BE与CD相交于点F,则下列结论一定正确的是()A = B C D2(2016安徽)如图,ABC中,AD是中线,BC=8,B=DAC,则线段AC的长为()A4 B4 C6 D43(2016烟台)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2) B(3,1) C(2,2) D(4,2)4(2015海南)如图,点P是ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A 0对 B 1对 C 2对 D 3对5(2016金华)在四边形ABCD中,B=90,AC=4,ABCD,DH垂直平分AC,点H为垂足设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A B C D6(2016山西)宽与长的比是(约为0618)的矩形叫做黄金矩形黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,以FD为半径画弧,交BC的延长线与点G;作,交AD的延长线于点H则图中下列矩形是黄金矩形的是( D )A矩形ABFE B矩形EFCD C矩形EFGH D矩形DCGH7. (2015江苏南通)如图,矩形ABCD中,F是DC上一点,BFAC,垂足为E,=,CEF的面积为S1,AEB的面积为S2,则的值等于 8.(2016黑龙江齐齐哈尔)如图,在ABC中,ADBC,BEAC,垂足分别为D,E,AD与BE相交于点F(1)求证:ACDBFD;(2)当tanABD=1,AC=3时,求BF的长9. (2015广西崇左)一块材料的形状是锐角三角形ABC,边BC=12mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上(1)求证:AEFABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?10. (2016四川眉山)如图,ABC和BEC均为等腰直角三角形,且ACB=BEC=90,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,PBD的面积为S,求S与x之间的函数关系式【答案解析】1.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案故选:A【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理注意掌握各线段的对应关系是解此题的关键2.【分析】根据AD是中线,得出CD=4,再根据AA证出CBACAD,得出=,求出AC即可【解答】解:BC=8,CD=4,在CBA和CAD中,B=DAC,C=C,CBACAD,=,AC2=CDBC=48=32,AC=4;故选B【点评】此题考查了相似三角形的判断与性质,关键是根据AA证出CBACAD,是一道基础题3.【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出OADOBG,进而得出AO的长,即可得出答案【解答】解:正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=6,AD=BC=2,ADBG,OADOBG, =,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选:A【点评】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键4.分析: 利用相似三角形的判定方法以及平行四边形的性质得出即可解答: 解:四边形ABCD是平行四边形,ABDC,ADBC,EAPEDC,EAPCPB,EDCCBP,故有3对相似三角形故选:D点评: 此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键5.【分析】由DAHCAB,得=,求出y与x关系,再确定x的取值范围即可解决问题DAN=BAC,DHA=B=90,DAHCAB,=,=,y=,ABAC,x4,图象是D故选D【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型6.分析:由作图方法可知DF=CF,所以CG=,且GH=CD=2CF 从而得出黄金矩形解答:CG=,GH=2CF 矩形DCGH是黄金矩形 选D7.分析:首先根据=设AD=BC=a,则AB=CD=2a,然后利用勾股定理得到AC=a,然后根据射影定理得到BC2=CECA,AB2=AEAC从而求得CE=,AE=,得到=,利用CEFAEB,求得=()2=解答:解:=,设AD=BC=a,则AB=CD=2a,AC=a,BFAC,CBECAB,AEBABC,BC2=CECA,AB2=AEACa2=CEa,2a2=AEa,CE=,AE=,=,CEFAEB,=()2=,故答案为:点评:本题考查了矩形的性质及相似三角形的判定,能够牢记射影定理的内容对解决本题起到至关重要的作用,难度不大8.【分析】(1)由C+DBF=90,C+DAC=90,推出DBF=DAC,由此即可证明(2)先证明AD=BD,由ACDBFD,得=1,即可解决问题(2)tanABD=1,ADB=90=1,AD=BD,ACDBFD,=1,BF=AC=39.【思路分析】(1)根据正方形的对边平行得到BCEF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可(2) 设EG=EF=x,用x表示AK,根据AEFABC列比例式可计算正方形边长.(3) 设EG=KD=x,根据AEFABC用x表示EF,根据矩形面积公式可以写出矩形面积关于x的二次函数,根据二次函数求出矩形的最大值.解:(1):(1)四边形EFGH为正形,BCEF,AEF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木结构工程雨季施工方案
- 苏州塑胶慢跑道施工方案
- 护士心电图入门
- 立交桥施工方案文字
- 天水阳光保温室施工方案
- 企业后勤保障岗个人试题及答案
- 酒水销售的毕业试题及答案
- 过期食品销毁措施方案(3篇)
- 机电性能改造方案(3篇)
- 混凝土路墩安装方案(3篇)
- 人教版高一英语必修一单词表(带音标) mp3跟读朗读听力下载
- 中国移动家集客考试题库(浓缩700题)
- 《新媒体写作与传播(第2版)》教学大纲、课程标准、习题答案
- 医疗器械产品生命周期管理-洞察分析
- T∕CFA 0308052-2019 铸造绿色工艺规划要求和评估 导则
- 中国古代文学史明代文学
- 《薄冰英语语法详解》
- 律师事务所数据安全应急预案
- 生涯规划讲座模板
- 男生形体课课件
- 餐厅转包合同范本
评论
0/150
提交评论