




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3反证法1.了解间接证明的一种基本方法反证法.2.理解反证法的概念及思考过程和特点.(难点)3.掌握反证法证题的基本步骤,会用反证法证明相关的数学问题.(重点、难点)基础初探教材整理反证法阅读教材P13P14“例3”以上内容,完成下列问题.1.反证法的定义在证明数学命题时,先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.2.反证法证明的思维过程反证法的证明过程可以概括为“否定推理否定”,即从否定结论开始,经过正确的推理,导出逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p则q”的过程可以用以下框图表示:判断(正确的打“”,错误的打“”)(1)反证法属于间接证明问题的方法.()(2)反证法的证明过程既可以是合情推理,也可以是一种演绎推理.()(3)反证法推出的矛盾不能与已知相矛盾.()【解析】(1)正确.反证法其实是证明其逆否命题成立,所以它属于间接问题的方法.(2)错误.反证法从证明过程看是一种严谨的演绎推理.(3)错误.反证法推出的矛盾可以与已知相矛盾.【答案】(1)(2)(3)质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:小组合作型用反证法证明否定性命题等差数列an的前n项和为Sn,a11,S393.(1)求数列an的通项an与前n项和Sn;(2)设bn(nN),求证:数列bn中任意不同的三项都不可能成为等比数列.【精彩点拨】第(1)问应用ana1(n1)d和Snna1n(n1)d两式求解.第(2)问先假设存在三项bp,bq,br成等比数列,再用反证法证明.【自主解答】(1)设等差数列an的公差为d,由已知得d2,故an2n1,Snn(n).(2)证明:由(1)得bnn.假设数列bn中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则bbpbr,即(q)2(p)(r),(q2pr)(2qpr)0.p,q,rN,pr,(pr)20,pr,这与pr矛盾.所以数列bn中任意不同的三项都不可能成为等比数列.1.当结论中含有“不”“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适合应用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.2.反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.3.常见否定词语的否定形式如下表所示:否定词语否定词语的否定形式没有有不大于大于不等于等于不存在存在再练一题1.已知方程f(x)ax(a1),证明:方程f(x)0没有负数根.【证明】假设x0是方程f(x)0的负数根,则x00,x01且ax00,所以ax0.又当x00时,0ax01,故01,即011,12,解得x02.这与x00矛盾, 所以假设不成立,故方程f(x)0没有负数根.用反证法证明“至多”“至少”问题已知x,y,z均大于零,求证:x,y,z这三个数中至少有一个不小于4.【精彩点拨】本题中含有“至少”,不宜直接证明,故可采用反证法证明.【自主解答】假设x,y,z都小于4,即x4,y4,z4,于是得12,而2 2 2 12,这与0,y0,且xy2,求证:与至少有一个小于2. 【证明】假设与都不小于2,即2,2.x0,y0,1y2x,1x2y,两式相加得2(xy)2(xy),xy2,这与已知中xy2矛盾,假设不成立,原命题成立.故与至少有一个小于2.探究共研型用反证法证明“唯一性”命题探究1用反证法证明数学命题的步骤是什么?【提示】(1)反设:假设命题的结论不成立,即假定原结论的反面为真.(2)归谬:从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾的结果.(3)存真:由矛盾的结果断定反设不真,从而肯定原结论成立.探究2如何证明两条相交直线有且只有一个交点?【提示】假设两条直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B的直线就有两条,这与“经过两点有且只有一条直线”相矛盾.所以两条相交直线有且只有一个交点.已知一点A和平面.求证:经过点A只能有一条直线和平面垂直.【精彩点拨】【自主解答】根据点A和平面的位置关系,分两种情况证明.(1)如图(1),点A在平面内,假设经过点A至少有平面的两条垂线AB,AC,那么AB,AC是两条相交直线,它们确定一个平面,平面和平面相交于经过点A的一条直线a.因为AB平面,AC平面,a,所以ABa,ACa,在平面内经过点A有两条直线都和直线a垂直,这与平面几何中经过直线上一点只能有已知直线的一条垂线相矛盾.(1)(2)如图(2),点A在平面外,假设经过点A至少有平面的两条垂线AB和AC(B,C为垂足),那么AB,AC是两条相交直线,它们确定一个平面,平面和平面相交于直线BC,因为AB平面,AC平面,BC,所以ABBC,ACBC.(2)在平面内经过点A有两条直线都和BC垂直,这与平面几何中经过直线外一点只能有已知直线的一条垂线相矛盾.综上,经过一点A只能有一条直线和平面垂直.证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.当证明结论以“有且只有”“只有一个”“唯一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其唯一性就较简单明了.再练一题3.若函数f(x)在区间a,b上的图像连续不断,且f(a)0,且f(x)在a,b上单调递增,求证:f(x)在(a,b)内有且只有一个零点.【证明】由于f(x)在a,b上的图像连续不断,且f(a)0,即f(a)f(b)m,则f(n)f(m),即00,矛盾;若nm,则f(n)f(m),即0B,则ab”的结论的否定应该是()A.abB.abC.abD.ab【解析】“大于”的否定是“不大于”,即“小于或等于”,故选B.【答案】B4.用反证法证明某命题时,对某结论:“自然数a,b,c中无偶数”,正确的假设为_. 【解析】a,b,c中无偶数,即a,b,c都是奇数,反设应是“a,b,c中至少有一个偶数”.【答案】a,b,c中至少有一个偶数5.若a,b,c互不相等,证明:三个方程ax22bxc0,bx22cxa0,cx22axb0至少有一个方程有两个相异实根.【证明】假设三个方程中都没有两个相异实根,则14b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年仓库房租赁合同暨仓储信息化系统升级改造协议
- 2025年新型设备抵押融资担保服务协议
- 2025版智能电网建设电力设备检测与维护服务合同
- 2025年旅游风景区特色餐饮店承包合同
- 2025年度跨国公司外籍财务顾问长期合作协议范本
- 2025版石材加工及批发业务合作协议
- 2025年度电力系统节能改造技术咨询合同
- 2025年公共场所智能垃圾分类保洁增补合同范本
- 2025年保洁员服务合同范本
- 信号通路阻断研究-洞察及研究
- DB1331∕T 034-2022 建筑与市政工程无障碍设计图集
- 乡镇卫生院风险管理制度
- 移动餐车营销策划方案范文
- 2025年修订版《雇佣合同》全文
- 人工智能训练师(3级)理论知识复习题练习卷附答案
- 《新药注册申报流程》课件
- 2022年全国中学生数学奥林匹克竞赛(预赛)暨2022年全国高中数学联合竞赛一试(A卷)参考答案及评分标准
- icp仪器分析考试试题及答案
- 核心素养培养:历史单元分层作业设计
- 水库引调水工程可行性研究报告(参考范文)
- 8.1薪火相传的传统美德同步课件 -2024-2025学年统编版道德与法治七年级下册
评论
0/150
提交评论