


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018高考数学异构异模复习考案 第十六章 坐标系与参数方程 16.2 参数方程撬题 文1在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系已知直线l的极坐标方程为(sin3cos)0,曲线C的参数方程为(t为参数),l与C相交于A,B两点,则|AB|_.答案2解析因为(sin3cos)0,所以sin3cos0,所以y3x0,即y3x.由消去t得y2x24.由解得或不妨令A,B,由两点间的距离公式得|AB|2.2已知曲线C1的参数方程是 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是2,则C1与C2交点的直角坐标为_答案(,1)解析由消去t,得yx(x0),即曲线C1的普通方程是yx(x0);由2,得24,得x2y24,即曲线C2的直角坐标方程是x2y24.联立解得故曲线C1,C2交点的直角坐标为(,1)3.在直角坐标系xOy中,曲线C1:(t为参数,t0),其中0.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:2sin,C3:2cos.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值解(1)曲线C2的直角坐标方程为x2y22y0,曲线C3的直角坐标方程为x2y22x0.联立解得或所以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为(R,0),其中0.因此A的极坐标为(2sin,),B的极坐标为(2cos,)所以|AB|2sin2cos|4.当时,|AB|取得最大值,最大值为4.4.已知直线l:(t为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cos.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|MB|的值解(1)2cos等价于22cos.将2x2y2,cosx代入即得曲线C的直角坐标方程为x2y22x0.(2)将代入,得t25t180,设这个方程的两个实根分别为t1,t2,则由参数t的几何意义即知,|MA|MB|t1t2|18.5在直角坐标系xOy中,直线l的参数方程为(t为参数)以原点为极点,x轴正半轴为极轴建立极坐标系,C的极坐标方程为2sin.(1)写出C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标解(1)由2sin,得22sin,从而有x2y22y,所以x2(y)23.(2)设P,又C(0,),则|PC|,故当t0时,|PC|取得最小值,此时,P点的直角坐标为(3,0)6在平面直角坐标系xOy中,圆C的参数方程为(t为参数)在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为sinm(mR)(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值解(1)消去参数t,得到圆C的普通方程为(x1)2(y2)29.由sinm,得sincosm0.所以直线l的直角坐标方程为xym0.(2)依题意,圆心C到直线l的距离等于2,即2,解得m32.7已知曲线C:1,直线l:(t为参数)(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30的直线,交l于点A,求|PA|的最大值与最小值解(1)曲线C的参数方程为(为参数),直线l的普通方程为2xy60.(2)曲线C上任意一点P(2cos,3sin)到l的距离为d|4cos3sin6|.则|PA|5sin()6|,其中为锐角,且tan.当sin()1时,|PA|取得最大值,最大值为,当sin()1时,|PA|取得最小值,最小值为.8在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为2cos,.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线l:yx2垂直,根据(1)中你得到的参数方程,确定D的坐标解(1)C的普通方程为(x1)2y21(0y1)可得C的参数方程为(t为参数,0t)(2)设D(1cost,sint),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,因为C在点D处的切线与l垂直,所以直线CD与l的斜率相同,tant,t,故D的直角坐标为,即.9在平面直角坐标系xOy中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何确定被迫签了协议合同
- 小儿推拿十三五课件
- 碳钢法兰模板采购合同范本
- 宁夏恒力钢丝绳股份有限公司校园招聘模拟试题附带答案详解完整
- 期货从业资格之《期货法律法规》模拟题库含答案详解(满分必刷)
- 期货从业资格之期货投资分析强化训练高能带答案详解(培优a卷)
- 难点详解广东省恩平市中考数学真题分类(实数)汇编达标测试试卷(含答案详解)
- 难点解析-冀教版七年级下册期末试题及答案详解【典优】
- 期货从业资格之期货投资分析能力提升B卷题库及参考答案详解(达标题)
- 期货从业资格之《期货法律法规》试卷及参考答案详解【满分必刷】
- 《国家基本药物临床应用指南》《国家基本药物处方集》培训
- 顶管机安全技术操作规程范文
- 旋风分离器效率计算
- 保教知识与能力幼儿园课件
- 财务部半年度述职汇报PPT模板
- 药品种类清单
- 公共基础知识(社区工作者基础知识)试题(附答案)
- GB/T 37915-2019社区商业设施设置与功能要求
- 《电业安全工作规程》
- 卡西欧gw5600说明书
- 中兴NGN培训教材 MSG9000结构原理介绍课件
评论
0/150
提交评论