容斥原理之三者容斥问题.doc_第1页
容斥原理之三者容斥问题.doc_第2页
容斥原理之三者容斥问题.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

容斥原理之三者容斥问题浙江行测答题技巧:容斥原理之三者容斥问题 中公教育考试研究院宋丽娜:容斥原理是行测数学运算中常考知识点。容斥原理是指在计数时,必须注意无一重复,且无遗漏。这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。例1:一个班级的学生数学和语文每人至少喜欢其中一种,其中喜欢数学课的有49人,喜欢语文课的有52人,二者都喜欢的有21人,则这个班级有多少人?中公点拨:本题就是一个容斥问题,解决此问题的方法就是先算:49+52=101(把含于某内容中的所有对象的数目先计算出来),然后再把计数时重复计算的数目排斥出去即:101-21=80人,则整个班级的人数就有80人。三者容斥问题是行测数学运算中常考也相对较复杂的容斥问题。所谓三者容斥是指在题干中有三种集合(集合就是具有共同属性所以元素的的整体,例如上题中喜欢数学的人构成一个集合)。三者容斥问题有一个基本公式:A,B,C代表三个集合,则有ABUC=A+B+C-AB-AC-BC+ ABC这个公式表达的含义是,A+B+C再减去两两相交之后,中间E(即ABC)这部分被减没了。而容斥原理的基本思想是计数时不重复不漏掉,故要再加回来,所以又加了一个ABC。例2. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。结果显示:他们都至少喜欢三种大球中的一种,其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人。篮球和排球都喜欢的多少人?中公教育解析:由题意可画图如下:则有上述公式可知:58+68+62-45-33-篮球和排球都喜欢+12=100人故喜欢篮球和排球的人有22人。例3. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。结果显示:其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人,还有5人三种球都不喜欢,则篮球和排球都喜欢的多少人?中公教育解析:本题和上题相比,较一般的三者容斥更为复杂。因为,题干中所出现的喜欢篮球、喜欢足球、喜欢排球的三种集合都是在全集100人中考查,且题干中出现了同时不属于这三种集合的元素。中公点拨:此类型题的做法大家只要记住构造全集即可,题干中不知道的设为未知数。外框的长方形代表全集,用I来表示,D代表同时不属于集合A,B,C三个集合的元素。构造全集I= A+B+C-AB-AC-BC+ ABC+D由此可得本题:设篮球和排球都喜欢的有x人,则有100=58+68+62-45-33-x+12+5解得x=27。中公教育专家提醒考生:容斥问题的关键在于计数时不能重复,不能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论