定州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
定州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
定州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
定州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
定州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

定州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设Sn为等差数列an的前n项和,已知在Sn中有S170,S180,那么Sn中最小的是( )AS10BS9CS8DS72 已知直线l1 经过A(3,4),B(8,1)两点,直线l2的倾斜角为135,那么l1与l2( )A垂直B平行C重合D相交但不垂直3 在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A众数B平均数C中位数D标准差4 已知向量=(1,1,0),=(1,0,2)且k+与2互相垂直,则k的值是( )A1BCD5 在ABC中,a=1,b=4,C=60,则边长c=( )A13BCD216 已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力7 定义在(0,+)上的函数f(x)满足:0,且f(2)=4,则不等式f(x)0的解集为( )A(2,+)B(0,2)C(0,4)D(4,+)8 已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,79 函数y=ax+1(a0且a1)图象恒过定点( )A(0,1)B(2,1)C(2,0)D(0,2)10设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,m,则m;其中正确命题的序号是( )ABCD11设Sn为等比数列an的前n项和,若a1=1,公比q=2,Sk+2Sk=48,则k等于( )A7B6C5D412已知ab0,那么下列不等式成立的是( )AabBa+cb+cC(a)2(b)2D二、填空题13设平面向量,满足且,则 ,的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.14已知满足,则的取值范围为_.15函数f(x)=ax+4的图象恒过定点P,则P点坐标是16有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元17方程有两个不等实根,则的取值范围是 18已知,则函数的解析式为_.三、解答题19已知集合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0(1)求AB(2)若AC=C,求实数m的取值范围20(本题满分12分) 已知数列an满足a1=1,an+1=2an+1(1)求数列an的通项公式;(2)令bn=n(an+1),求数列bn的前n项和Tn21.(1)求函数的单调递减区间;(2)在中,角的对边分别为,若,的面积为,求的最小值. 22(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问卷调查,得到了如下的列联表:患心肺疾病患心肺疾病合计男20525女101525合计302050(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量,判断心肺疾病与性别是否有关?下面的临界值表供参考:(参考公式:,其中)23已知函数f(x)=x3x2+cx+d有极值()求c的取值范围;()若f(x)在x=2处取得极值,且当x0时,f(x)d2+2d恒成立,求d的取值范围24某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:当年平均盈利额达到最大值时,以30万元价格处理该机床;当盈利额达到最大值时,以12万元价格处理该机床问哪种方案处理较为合理?请说明理由定州市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:S160,S170,=8(a8+a9)0,=17a90,a80,a90,公差d0Sn中最小的是S8故选:C【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题2 【答案】A【解析】解:由题意可得直线l1的斜率k1=1,又直线l2的倾斜角为135,其斜率k2=tan135=1,显然满足k1k2=1,l1与l2垂直故选A3 【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错平均数86,88不相等,B错中位数分别为86,88,不相等,C错A样本方差S2= (8286)2+2(8486)2+3(8686)2+4(8886)2=4,标准差S=2,B样本方差S2= (8488)2+2(8688)2+3(8888)2+4(9088)2=4,标准差S=2,D正确故选D【点评】本题考查众数、平均数、中位标准差的定义,属于基础题4 【答案】D【解析】解: =(1,1,0),=(1,0,2),k+=k(1,1,0)+(1,0,2)=(k1,k,2),2=2(1,1,0)(1,0,2)=(3,2,2),又k+与2互相垂直,3(k1)+2k4=0,解得:k=故选:D【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题5 【答案】B【解析】解:a=1,b=4,C=60,由余弦定理可得:c=故选:B6 【答案】D【解析】由已知得,故,故选D7 【答案】B【解析】解:定义在(0,+)上的函数f(x)满足:0f(2)=4,则2f(2)=8,f(x)0化简得,当x2时,成立故得x2,定义在(0,+)上不等式f(x)0的解集为(0,2)故选B【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解属于中档题8 【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础9 【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2函数f(x)=ax+1的图象必过定点(0,2)故选:D【点评】本题考查了指数函数的性质和a0=1(a0且a1),属于基础题10【答案】B【解析】解:由m、n是两条不同的直线,是三个不同的平面:在中:若m,n,则由直线与平面垂直得mn,故正确;在中:若,则,m,由直线垂直于平面的性质定理得m,故正确;在中:若m,n,则由直线与平面垂直的性质定理得mn,故正确;在中:若,m,则m或m,故错误故选:B11【答案】D【解析】解:由题意,Sk+2Sk=,即32k=48,2k=16,k=4故选:D【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题12【答案】C【解析】解:ab0,ab0,(a)2(b)2,故选C【点评】本题主要考查不等式的基本性质的应用,属于基础题二、填空题13【答案】,. 【解析】,而,当且仅当与方向相同时等号成立,故填:,.14【答案】【解析】 考点:简单的线性规划【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1)表示点与原点的距离;(2)表示点与点间的距离;(3)可表示点与点连线的斜率;(4)表示点与点连线的斜率.15【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题16【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146417【答案】【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,直线的图象恒过定点,结合图象,可知,当过点时,当直线与圆相切时,即,解得,所以实数的取值范围是.111考点:直线与圆的位置关系的应用【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.18【答案】【解析】试题分析:由题意得,令,则,则,所以函数的解析式为.考点:函数的解析式.三、解答题19【答案】 【解析】解:由合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0A=x|1x6,C=x|mxm+9(1),(2)由AC=C,可得AC即,解得3m120【答案】解:(1)an+1=2an+1,an+1+1=2(an+1),又a1=1,数列an+1是首项、公比均为2的等比数列,an+1=2n,an=1+2n; 6分(2)由(1)可知bn=n(an+1)=n2n=n2n1,Tn=120+22+n2n1,2Tn=12+222+(n1)2n1+n2n,错位相减得:Tn=1+2+22+2n1n2n=n2n=1(n1)2n,于是Tn=1+(n1)2n则所求和为 6分21【答案】(1)();(2).【解析】试题分析:(1)根据可求得函数的单调递减区间;(2)由可得,再由三角形面积公式可得,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1),令,解得,的单调递减区间为().考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用22【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.23【答案】 【解析】解()f(x)=x3x2+cx+d,f(x)=x2x+c,要使f(x)有极值,则方程f(x)=x2x+c=0有两个实数解,从而=14c0,c()f(x)在x=2处取得极值,f(2)=42+c=0,c=2f(x)=x3x22x+d,f(x)=x2x2=(x2)(x+1),当x(,1时,f(x)0,函数单调递增,当x(1,2时,f(x)0,函数单调递减x0时,f(x)在x=1处取得最大值,x0时,f(x)恒成立,即(d+7)(d1)0,d7或d1,即d的取值范围是(,7)(1,+)【点评】本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论