




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷通化市二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在三角形中,若,则的大小为( )ABCD2 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )ABCD3 设奇函数f(x)在(0,+)上为增函数,且f(1)=0,则不等式0的解集为( )A(1,0)(1,+)B(,1)(0,1)C(,1)(1,+)D(1,0)(0,1)4 已知点M(6,5)在双曲线C:=1(a0,b0)上,双曲线C的焦距为12,则它的渐近线方程为( )Ay=xBy=xCy=xDy=x5 已知直线xy+a=0与圆心为C的圆x2+y2+2x4y+7=0相交于A,B两点,且=4,则实数a的值为( )A或B或3C或5D3或56 已知复数z满足zi=2i,i为虚数单位,则z=( )A12iB1+2iC12iD1+2i7 函数在区间上的最大值为5,最小值为1,则的取值范围是( )A B C D8 函数f(x)=xsinx的图象大致是( )ABC D9 设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为( )A1BCD10下列函数中,与函数的奇偶性、单调性相同的是( )A B C D11年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,按分层抽样的方法,应从青年职工中抽取的人数为( )A. B. C. D.【命题意图】本题主要考查分层抽样的方法的运用,属容易题.12若点O和点F(2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( )ABCD二、填空题13设函数f(x)=则函数y=f(x)与y=的交点个数是14向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为15设曲线y=xn+1(nN*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+a99的值为16用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.17已知函数f(x)=有3个零点,则实数a的取值范围是18长方体ABCDA1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为三、解答题19已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+20生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标70,76)76,82)82,88)88,94)94,100元件A81240328元件B71840296()试分别估计元件A,元件B为正品的概率;()生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元在()的前提下,()记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;()求生产5件元件B所获得的利润不少于140元的概率21已知函数f(x)=|xa|()若不等式f(x)2的解集为0,4,求实数a的值;()在()的条件下,若x0R,使得f(x0)+f(x0+5)m24m,求实数m的取值范围22如图,在四棱锥PABCD中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点,求证:(1)直线EF平面PCD;(2)平面BEF平面PAD23(本小题满分12分)在ABC中,A,B,C所对的边分别是a、b、c,不等式x2cos C4xsin C60对一切实数x恒成立.(1)求cos C的取值范围;(2)当C取最大值,且ABC的周长为6时,求ABC面积的最大值,并指出面积取最大值时ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.24已知复数z=(1)求z的共轭复数;(2)若az+b=1i,求实数a,b的值通化市二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】由正弦定理知,不妨设,则有,所以,故选A答案:A 2 【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件3 【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(1)=f(1)=0,又f(x)在(0,+)上为增函数,则奇函数f(x)在(,0)上也为增函数,当0x1时,f(x)f(1)=0,得0,满足;当x1时,f(x)f(1)=0,得0,不满足,舍去;当1x0时,f(x)f(1)=0,得0,满足;当x1时,f(x)f(1)=0,得0,不满足,舍去;所以x的取值范围是1x0或0x1故选D【点评】本题综合考查奇函数定义与它的单调性4 【答案】A【解析】解:点M(6,5)在双曲线C:=1(a0,b0)上,又双曲线C的焦距为12,12=2,即a2+b2=36,联立、,可得a2=16,b2=20,渐近线方程为:y=x=x,故选:A【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题5 【答案】C【解析】解:圆x2+y2+2x4y+7=0,可化为(x+)2+(y2)2=8=4,22cosACB=4cosACB=,ACB=60圆心到直线的距离为,=,a=或5故选:C6 【答案】A【解析】解:由zi=2i得,故选A7 【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知需从开始,要取得最大值为,由图可知的右端点为,故的取值范围是.考点:二次函数图象与性质8 【答案】A【解析】解:函数f(x)=xsinx满足f(x)=xsin(x)=xsinx=f(x),函数的偶函数,排除B、C,因为x(,2)时,sinx0,此时f(x)0,所以排除D,故选:A【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力9 【答案】D【解析】解:设函数y=f(x)g(x)=x2lnx,求导数得=当时,y0,函数在上为单调减函数,当时,y0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+)上x2lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值10【答案】A【解析】试题分析:所以函数为奇函数,且为增函数.B为偶函数,C定义域与不相同,D为非奇非偶函数,故选A.考点:函数的单调性与奇偶性11【答案】C 12【答案】B【解析】解:因为F(2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力二、填空题13【答案】4 【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4故答案为:414【答案】 【解析】解:不等式组的可行域为:由题意,A(1,1),区域的面积为=(x3)=,由,可得可行域的面积为:1=,坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积15【答案】2 【解析】解:曲线y=xn+1(nN*),y=(n+1)xn,f(1)=n+1,曲线y=xn+1(nN*)在(1,1)处的切线方程为y1=(n+1)(x1),该切线与x轴的交点的横坐标为xn=,an=lgxn,an=lgnlg(n+1),a1+a2+a99=(lg1lg2)+(lg2lg3)+(lg3lg4)+(lg4lg5)+(lg5lg6)+(lg99lg100)=lg1lg100=2故答案为:216【答案】48【解析】17【答案】(,1) 【解析】解:函数f(x)=有3个零点,a0 且 y=ax2+2x+1在(2,0)上有2个零点,解得a1,故答案为:(,1)18【答案】4或 【解析】解:设AB=2x,则AE=x,BC=,AC=,由余弦定理可得x2=9+3x2+923,x=1或,AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=故答案为:4或三、解答题19【答案】 【解析】解:(1)a=1时,因为f(x)=xlnx,f(x)=1,当0x1时,f(x)0,此时函数f(x)单调递减当1xe时,f(x)0,此时函数f(x)单调递增所以函数f(x)的极小值为f(1)=1(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e上的最小值为1又g(x)=,所以当0xe时,g(x)0,此时g(x)单调递增所以g(x)的最大值为g(e)=,所以f(x)ming(x)max,所以在(1)的条件下,f(x)g(x)+【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题20【答案】 【解析】解:()元件A为正品的概率约为 元件B为正品的概率约为 ()()生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A次B次随机变量X的所有取值为90,45,30,15 P(X=90)=;P(X=45)=;P(X=30)=;P(X=15)=随机变量X的分布列为:EX= ()设生产的5件元件B中正品有n件,则次品有5n件依题意得 50n10(5n)140,解得所以 n=4或n=5 设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)=21【答案】 【解析】解:()|xa|2,a2xa+2,f(x)2的解集为0,4,a=2()f(x)+f(x+5)=|x2|+|x+3|(x2)(x+3)|=5,x0R,使得,即成立,4m+m2f(x)+f(x+5)min,即4m+m25,解得m5,或m1,实数m的取值范围是(,5)(1,+)22【答案】 【解析】证明:(1)在PAD中,因为E,F分别为AP,AD的中点,所以EFPD又因为EF不在平面PCD中,PD平面PCD所以直线EF平面PCD(2)连接BD因为AB=AD,BAD=60所以ABD为正三角形因为F是AD的中点,所以B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025物业电工考试题及答案
- 2025木工考试题及答案
- 2025成人自考试题及答案
- 2025c 考试题库及答案
- 幼儿园卫生管理与疾病预防
- 土地的誓约课件
- 校园食品安全监管制度建设
- 武汉民政职业学院《园林建筑构造》2024-2025学年第一学期期末试卷
- 民族团结课课件
- 江苏城市职业学院《机械设计基础II》2024-2025学年第一学期期末试卷
- 《鸿蒙应用开发项目教程》全套教学课件
- 四川省广安市2024-2025学年高一下学期期末考试数学试题(含答案)
- 电缆测试技术课件
- 政协大走访活动方案
- 个人养老金课件
- 2025至2030中国氧化钪行业需求状况及未来趋势前景研判报告
- udi追溯管理制度
- 新能源产业园区厂房物业管理及绿色能源应用合同
- 读书分享《教师的语言力》
- 2025年5月上海普通高中学业水平等级性考试物理试题及答案
- 医院医患沟通谈话记录范本
评论
0/150
提交评论