牙克石市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
牙克石市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
牙克石市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
牙克石市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
牙克石市第二中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷牙克石市第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限2 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A11B11.5C12D12.53 直角梯形中,直线截该梯形所得位于左边图形面积为,则函数的图像大致为( ) 4 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)5 图 1是由哪个平面图形旋转得到的( ) A B C D 6 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD7 已知PD矩形ABCD所在的平面,图中相互垂直的平面有( )A2对B3对C4对D5对8 函数f(x)=ax2+bx与f(x)=logx(ab0,|a|b|)在同一直角坐标系中的图象可能是( )ABCD9 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日10如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D3111“互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A10 B20 C30 D4012已知数列an是等比数列前n项和是Sn,若a2=2,a3=4,则S5等于( )A8B8C11D11二、填空题13命题“对任意的xR,x3x2+10”的否定是14在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是15【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为_16已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前16项和为17设实数x,y满足,向量=(2xy,m),=(1,1)若,则实数m的最大值为18命题“xR,2x23ax+90”为假命题,则实数a的取值范围为 三、解答题19已知集合A=x|x2+2x0,B=x|y=(1)求(RA)B; (2)若集合C=x|ax2a+1且CA,求a的取值范围20等差数列an的前n项和为Sna3=2,S8=22(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn21已知2x2,2y2,点P的坐标为(x,y)(1)求当x,yZ时,点P满足(x2)2+(y2)24的概率;(2)求当x,yR时,点P满足(x2)2+(y2)24的概率22(本小题满分16分) 在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式(,为常数),其中与成反比,与的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.(1) 求的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大(保留1位小数)23在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程24求下列函数的定义域,并用区间表示其结果(1)y=+;(2)y=牙克石市第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:(4+5i)i=54i,复数(4+5i)i的共轭复数为:5+4i,在复平面内,复数(4+5i)i的共轭复数对应的点的坐标为:(5,4),位于第二象限故选:B2 【答案】C【解析】解:由题意,0.065+x0.1=0.5,所以x为2,所以由图可估计样本重量的中位数是12故选:C3 【答案】C【解析】试题分析:由题意得,当时,当时,所以,结合不同段上函数的性质,可知选项C符合,故选C.考点:分段函数的解析式与图象.4 【答案】C【解析】解: =f(x0),故选C5 【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.6 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键7 【答案】D【解析】解:PD矩形ABCD所在的平面且PD面PDA,PD面PDC,面PDA面ABCD,面PDC面ABCD,又四边形ABCD为矩形BCCD,CDADPD矩形ABCD所在的平面PDBC,PDCDPDAD=D,PDCD=DCD面PAD,BC面PDC,AB面PAD,CD面PDC,BC面PBC,AB面PAB,面PDC面PAD,面PBC面PCD,面PAB面PAD综上相互垂直的平面有5对故答案选D8 【答案】 D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是减函数,D正确【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力9 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础10【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题11【答案】B【解析】试题分析:设从青年人抽取的人数为,故选B考点:分层抽样12【答案】D【解析】解:设an是等比数列的公比为q,因为a2=2,a3=4,所以q=2,所以a1=1,根据S5=11故选:D【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题二、填空题13【答案】存在xR,x3x2+10 【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的xR,x3x2+10”的否定是:存在xR,x3x2+10故答案为:存在xR,x3x2+10【点评】本题考查命题的否定,特称命题与全称命题的否定关系14【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题15【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内16【答案】546 【解析】解:当n=2k1(kN*)时,a2k+1=a2k1+1,数列a2k1为等差数列,a2k1=a1+k1=k;当n=2k(kN*)时,a2k+2=2a2k,数列a2k为等比数列,该数列的前16项和S16=(a1+a3+a15)+(a2+a4+a16)=(1+2+8)+(2+22+28)=+=36+292=546故答案为:546【点评】本题考查了等差数列与等比数列的通项公式及前n项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题17【答案】6 【解析】解: =(2xy,m),=(1,1)若,2xy+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大由,解得,代入2xy+m=0得m=6即m的最大值为6故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值根据向量平行的坐标公式是解决本题的关键18【答案】2a2【解析】解:原命题的否定为“xR,2x23ax+90”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需=9a24290,解得:2a2故答案为:2a2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定注意“恒成立”条件的使用三、解答题19【答案】 【解析】解:(1)A=x|x2+2x0=x|2x0,B=x|y=x|x+10=x|x1,RA=x|x2或x0,(RA)B=x|x0;(2)当a2a+1时,C=,此时a1满足题意;当a2a+1时,C,应满足,解得1a;综上,a的取值范围是20【答案】 【解析】解:(1)设等差数列an的公差为d,a3=2,S8=22,解得,an的通项公式为an=1+(n1)=(2)bn=,Tn=2+=2=21【答案】 【解析】解:如图,点P所在的区域为长方形ABCD的内部(含边界),满足(x2)2+(y2)24的点的区域为以(2,2)为圆心,2为半径的圆面(含边界)(1)当x,yZ时,满足2x2,2y2的点有25个,满足x,yZ,且(x2)2+(y2)24的点有6个,依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);所求的概率P=(2)当x,yR时,满足2x2,2y2的面积为:44=16,满足(x2)2+(y2)24,且2x2,2y2的面积为: =,所求的概率P=【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档22【答案】(1) ()(2) 试题解析:(1) 因为与成反比,与的平方成正比, 所以可设:,则则 2分因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套所以,即,解得:, 6分所以, () 8分(2) 由(1)可知,套题每日的销售量, 答:当销售价格为元/套时,网校每日销售套题所获得的利润最大.16分考点:利用导数求函数最值23【答案】 【解析】解:()由从而C的直角坐标方程为即=0时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论