




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
花垣县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是( )A1BCD2 一个几何体的三视图如图所示,则该几何体的体积是( ) A64 B72 C80 D112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.3 如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 4 如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值5 已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是( )A(0,1)B(1,+)C(1,0)D(,1)6 数列an满足a1=3,ananan+1=1,An表示an前n项之积,则A2016的值为( )ABC1D17 记集合和集合表示的平面区域分别为1,2, 若在区域1内任取一点M(x,y),则点M落在区域2内的概率为( ) A B C D【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力8 对于区间a,b上有意义的两个函数f(x)与g(x),如果对于区间a,b中的任意数x均有|f(x)g(x)|1,则称函数f(x)与g(x)在区间a,b上是密切函数,a,b称为密切区间若m(x)=x23x+4与n(x)=2x3在某个区间上是“密切函数”,则它的一个密切区间可能是( )A3,4B2,4C1,4D2,39 下列函数中,为偶函数的是( )Ay=x+1By=Cy=x4Dy=x510 如果命题pq是真命题,命题p是假命题,那么( )A命题p一定是假命题B命题q一定是假命题C命题q一定是真命题D命题q是真命题或假命题11设是等差数列的前项和,若,则( )A1 B2 C3 D412设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则PF1F2的面积等于( )ABC24D48二、填空题13函数f(x)=ax+4的图象恒过定点P,则P点坐标是14命题“,”的否定是 15给出下列命题:存在实数,使函数是偶函数是函数的一条对称轴方程若、是第一象限的角,且,则sinsin其中正确命题的序号是16如果实数满足等式,那么的最大值是 17已知是定义在上函数,是的导数,给出结论如下:若,且,则不等式的解集为; 若,则;若,则;若,且,则函数有极小值;若,且,则函数在上递增其中所有正确结论的序号是 18如图所示,正方体ABCDABCD的棱长为1,E、F分别是棱AA,CC的中点,过直线EF的平面分别与棱BB、DD交于M、N,设BM=x,x0,1,给出以下四个命题:平面MENF平面BDDB;当且仅当x=时,四边形MENF的面积最小;四边形MENF周长l=f(x),x0,1是单调函数;四棱锥CMENF的体积v=h(x)为常函数;以上命题中真命题的序号为三、解答题19.已知定义域为R的函数f(x)=是奇函数(1)求a的值;(2)判断f(x)在(,+)上的单调性(直接写出答案,不用证明);(3)若对于任意tR,不等式f(t22t)+f(2t2k)0恒成立,求k的取值范围20已知数列an的首项a1=2,且满足an+1=2an+32n+1,(nN*)(1)设bn=,证明数列bn是等差数列;(2)求数列an的前n项和Sn21已知正项等差an,lga1,lga2,lga4成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d22如图,点A是以线段BC为直径的圆O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P(1)求证:BF=EF;(2)求证:PA是圆O的切线23如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E()求证:AE=EB;()若EFFC=,求正方形ABCD的面积 24已知全集U=R,集合A=x|x24x50,B=x|x4,C=x|xa()求A(UB); ()若AC,求a的取值范围花垣县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=故选:B【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题2 【答案】C.【解析】3 【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础4 【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D5 【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k(0,1)时,y=f(x)与y=k的图象有两个交点,即方程f(x)=k有两个不同的实根,故选:A6 【答案】D【解析】解:a1=3,ananan+1=1,得,a4=3,数列an是以3为周期的周期数列,且a1a2a3=1,2016=3672,A2016 =(1)672=1故选:D7 【答案】A【解析】画出可行域,如图所示,1表示以原点为圆心, 1为半径的圆及其内部,2表示及其内部,由几何概型得点M落在区域2内的概率为,故选A.8 【答案】D【解析】解:m(x)=x23x+4与n(x)=2x3,m(x)n(x)=(x23x+4)(2x3)=x25x+7令1x25x+71,则有,2x3故答案为D【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题9 【答案】C【解析】解:对于A,既不是奇函数,也不是偶函数,对于B,满足f(x)=f(x),是奇函数,对于C,定义域为R,满足f(x)=f(x),则是偶函数,对于D,满足f(x)=f(x),是奇函数,故选:C【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题10【答案】D【解析】解:命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又命题“非p”也是假命题,命题p为真命题故命题q为可真可假故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键11【答案】A【解析】1111试题分析:故选A111考点:等差数列的前项和12【答案】C【解析】解:F1(5,0),F2(5,0),|F1F2|=10,3|PF1|=4|PF2|,设|PF2|=x,则,由双曲线的性质知,解得x=6|PF1|=8,|PF2|=6,F1PF2=90,PF1F2的面积=故选C【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用二、填空题13【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题14【答案】,【解析】试题分析:“,”的否定是,考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;对原命题的结论进行否定.(2)判定全称命题“xM,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M中的一个特殊值x0,使p(x0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个xx0,使p(x0)成立即可,否则就是假命题.15【答案】 【解析】解:sincos=sin2,存在实数,使错误,故错误,函数=cosx是偶函数,故正确,当时, =cos(2+)=cos=1是函数的最小值,则是函数的一条对称轴方程,故正确,当=,=,满足、是第一象限的角,且,但sin=sin,即sinsin不成立,故错误,故答案为:【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力16【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.17【答案】【解析】解析:构造函数,在上递增, ,错误;构造函数,在上递增,正确;构造函数,当时,错误;由得,即,函数在上递增,在上递减,函数的极小值为,正确;由得,设,则,当时,当时,当时,即,正确18【答案】 【解析】解:连结BD,BD,则由正方体的性质可知,EF平面BDDB,所以平面MENF平面BDDB,所以正确连结MN,因为EF平面BDDB,所以EFMN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小所以正确因为EFMN,所以四边形MENF是菱形当x0,时,EM的长度由大变小当x,1时,EM的长度由小变大所以函数L=f(x)不单调所以错误连结CE,CM,CN,则四棱锥则分割为两个小三棱锥,它们以CEF为底,以M,N分别为顶点的两个小棱锥因为三角形CEF的面积是个常数M,N到平面CEF的距离是个常数,所以四棱锥CMENF的体积V=h(x)为常函数,所以正确故答案为:【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高三、解答题19【答案】 【解析】解:(1)因为f(x)为R上的奇函数所以f(0)=0即=0,a=1 (2)f(x)=1+,在(,+)上单调递减(3)f(t22t)+f(2t2k)0f(t22t)f(2t2k)=f(2t2+k),又f(x)=在(,+)上单调递减,t22t2t2+k,即3t22tk0恒成立,=4+12k0,k(利用分离参数也可)20【答案】 【解析】解:(1)=,数列bn是以为首项,3为公差的等差数列(2)由(1)可知,得:,【点评】本题主要考查数列通项公式和前n项和的求解,利用定义法和错位相减法是解决本题的关键21【答案】 【解析】(1)证明:设an中首项为a1,公差为dlga1,lga2,lga4成等差数列,2lga2=lga1+lga4,a22=a1a4即(a1+d)2=a1(a1+3d),d=0或d=a1当d=0时,an=a1,bn=, =1,bn为等比数列;当d=a1时,an=na1,bn=, =,bn为等比数列综上可知bn为等比数列(2)解:当d=0时,S3=,所以a1=;当d=a1时,S3=,故a1=3=d【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆22【答案】 【解析】证明:(1)BC是圆O的直径,BE是圆O的切线,EBBC又ADBC,ADBE可得BFCDGC,FECGAC,得G是AD的中点,即DG=AGBF=EF(2)连接AO,ABBC是圆O的直径,BAC=90由(1)得:在RtBAE中,F是斜边BE的中点,AF=FB=EF,可得FBA=FAB又OA=OB,ABO=BAOBE是圆O的切线,EBO=90,得EBO=FBA+ABO=FAB+BAO=FAO=90,PAOA,由圆的切线判定定理,得PA是圆O的切线【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题23【答案】 【解析】证明:()以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EFEC,故AE=EB()设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论