SPC学习提纲教学课件PPT.ppt_第1页
SPC学习提纲教学课件PPT.ppt_第2页
SPC学习提纲教学课件PPT.ppt_第3页
SPC学习提纲教学课件PPT.ppt_第4页
SPC学习提纲教学课件PPT.ppt_第5页
已阅读5页,还剩134页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

spc学习提纲 spc 广州今朝科技有限公司 spc: 统计过程控制 wstatistical(统计): n以数理统计为基础,基于数据的科学分析和 管理方法; wprocess(过程): n任何一个有输入输出的活动; 6个要素: 5m1e wcontrol(控制): n 通过掌握规律来预测未来发展并实现预防; 我们为什么需要spc? w质量专业人员是管理小组中关键问题的 解决者。 wspc是质量管理的基本技术之一。 学习目的 w目标: 用spc思考( thinking in spc) w说明: n1)不包括spc对企业发展的效益; n2)不包括公式的推导和详细的计算; n3)为了方便说明,课程介绍均以生产制造为例, 但不限于此。 n4)假设所有的学员都有基本的数学知识; n5)介绍的方法及其计算公式以qs9000为准; 学习提纲 w基本spc统计学; wspc的核心工具控制图; w过程能力研究; w量具重复性和再现性研究; 从数据中寻找规律 直方图 广州今朝科技有限公司 guangzhou today technology ltd 一个实例: w某工厂接收了一批外协厂制造的青铜轴承用于生产一种重要 的仪器。但该厂不能信任生产这些轴承厂家的工作,决定对 供应商提供的轴承进行分析。 w这些轴承的关键特性是它们的内径,其规格为 1.3760.010英寸。 w现抽取了100个青铜轴承,对它们的内径进行仔细的测量,并 记录了测量结果。 100个青铜轴承内径的测量值如下表 : 数据会告诉您什么呢? 回答 w数据列表不能表达出任何有实际意义的 东西(virtually nothing)! w必须对数据进行进一步分析。 w图形可以帮助我们将数据转换成信息。 数据 列表 能否接受这批产品? w与目标值相比较: 平均值:1.3773 w与规格界限相比较: 极差(最大值-最小值) =1.383-1.370=0.013 w数据分布的更进一步的信息: 数据分成10组后,落在每个区间 内的数据个数: 数据量分数 50-1006-10 100-2507-12 250个以 上 10-25 1.376 0.010 制作频数分布表 绘制直方图 lslusl 分析直方图 w与规格限1.3661.386进行比较,所有的 测量值都在其范围内(而且在+/-3s的范 围内)。 w分布基本上是对称的,有一点点向右偏斜 ,但不严重。 w所以该厂决定接收这批青铜轴承。 建议:轴承的加工中心应该左移; 建立一个直方图 w收集整理数据 w定组数 n w算极差 r w定组距 i w确定组的中心点和各组界限 w制作频数分布表 w绘制直方图 w分析 数据量分数 50-1006-10 100-2507-12 250个以 上 10-25 直方图告诉我们 w数据分布的中心位置(average)在哪里? w数据分散程度(spread)如何? w数据分布的形状(shape)怎样? 经验之谈: 对大多数工业用的分析来说,50个数值具备足够 的可靠性。 但单个测量值的费用比较低时,或是当需要准确 分析时,可以采用100个或更多的数据。 n ( , 2)- : 总体平均值,描述数据的集中位置 。 :总体标准差,描述数据的分散程度 。 x n(,2) 理想情况:正态曲线 w不同(均值) w不同(标准差 ) 正态曲线的特征 w曲线关于对称; w当x=时取到最大值; wx离越远,f(x)的值越小; 正态曲线 68%68% 95%95% 99.7%99.7% 现实状况:一些异常 双峰 峭壁 分析直方图举例: usl lsl aa图 lslusl lslusllslusl 直方图的峰度和对称度 对称度(skewness):直 方图数据分布的对称性; 峰度(kurtosis):直方图 数据分布的陡峭度; 直方图为对称分布的,则 s=0; 直方图为正态分布的,则 s=0,k=0。 直方图的作用 w显示数据的分布特征 w指出采取措施的必要 w观察采取措施后的效果 w比较和评估设备、供应商、物料等 w评估过程的能力 控制图及其背后的故事 广州今朝科技有限公司 guangzhou today technology ltd 控制图 +3s 12345678910 18 17 16 15 14 13 12 11 10 9 8 7 6 5 -3s average 点落在该区间的概率为99.7% components of every control chart: 1. data points3. upper control limit 2. center line 4. lower control limit 控制图原理: w1) 3 原理: 若变量x服从正态分布,那么,在 3 范围内包含了99.73% 的数值。 w2) 中心极限定理: 无论产品或服务质量水平的总体分布是什 么,其 的分布(每个 都是从总体的一 个抽样的均值)在当样本容量逐渐增大时将 趋向于正态分布。 正态性假定有实际意义吗 ? w1)不是在研究一门精确的科学,而是 作为一种谨慎的工业指导; w2)大部分的实际情况的数据分布与正 态分布极为相似; w3)根据中心极限定理进行数据的处理 ; w4)如果不适合可以不需要用正态曲线 直接来分析; 质量特性分类 计量值(variable):定量的数据;值可以取 给定范围内的任何一个可能的数值 。 计数值(attribute):定性的数据;值可以 取一组特定的数值,而不能取这些数值之间 的数值 。 计件型 计点型 控制图的分类 v计量值控制图: 均值-极差控制图(x bar-r) 均值-标准差控制图(x bar s) 单值-移动极差控制图(x-mr) v计数值控制图: 不良率控制图(p) 不良数控制图(pn) 缺陷数控制图(c) 单位缺陷数控制图(u) 计量型数据吗? 性质上是否均匀 或不能按子组取样? 关心的是 不合格品率吗? 样本容量 是否恒定? 样本容量 是否恒定? 子组容量 9? np或p图p图 c或u图u图 是否 是 是 是 是 是 否 否 否 否 否 关心的是 单位零件缺陷数吗? 是 选择合适的控制图 计量型控制图 广州今朝科技有限公司 guangzhou today technology ltd 一个实例 (一) w一台自动螺丝车床已经准备好了加工切断长度的 图纸公差为0.5000.008英寸的螺栓。 w频数分布在进行调整期间已经完成,分析结果表 明进行一段时期加工生产的开端是可以令人满意 的。 w为了分析和控制加工过程中螺栓的质量,现决定 采用均值极差控制图进行监控。 w按如下八个步骤进行: 一个实例(二) w步骤1:选择质量特性 螺栓的切断长度至关重要 w步骤2:按合理的计划来搜集数据 每小时抽取5个产品作为一个样本。检 验员按时间顺序收集了25个样本。 收集的数据表 一个实例(三) w步骤3:计算样本平均值及极差( 见上表) w步骤4:确定总的平均数和平均极 差 一个实例(四) w步骤5:计算控制限 w 其中: 一个实例(五) 步骤6:利用控制界限分析样本数值 一个实例(六) 一个实例(七) w步骤7:确定控制限是否能经济地满 足要求; w步骤8:运用控制限进行控制; 均值-极差控制图( ) w最常用;最基本; w控制对象为计量值; w适用于n 9的情况; w均值图用于观察和分析分布的均值的变化 ,即过程的集中趋势; w极差图观察和分析分布的分散情况,即过 程的离散程度。 均值控制图极差控制图 均值-极差控制图 -控制限 使用均值-标准差控制图 w步骤3:计算样本平均值及标准差 w步骤4:确定总的平均数和平均标 准差 一个实例(四) w步骤5:计算控制限 w 其中: 一个实例(五) 一个实例(六) w步骤6:利用控制界限分析样本数值 均值-标准差控制图( ) w控制对象为计量值; w更精确; w均值图用于观察和分析分布的均值的 变化,即过程的集中趋势; w标准差图观察和分析分布的分散情况 ,即过程的离散程度。 均值控制图标准差控制图 怎样确定控制限 单值-移动极差控制图( ) w与均值-极差控制图的作用类似; w不需多个测量值或样本是均匀的(如浓度) ; w因为费用或时间的关系,过程只有一个测量 值(如破坏性实验); w敏感性不强; w用自动化检查,对产品进行全检时; 移动极差 w移动极差是指一个测定值 xi 与紧邻的测 定值xi+1 之差的绝对值,记作mr, mr = | xi - xi+1 | (i=1,2,k-1) 其中:k为测定值的个数; k个测定值有k-1个移动极差,每个移动极差值相当与样 本大小n=2时的极差值. w1 计算总平均数: w2 计算移动极差平均数: 怎样确定控制限 怎样确定控制限 相当于n=2时的均值控制图 x控制图 mr控制图 相当于n=2时的极差控制图; n=2时,d4=3.267,d3=0 怎样确定控制限 计数型控制图 广州今朝科技有限公司 guangzhou today technology ltd 不良品率控制图(p图) w对产品不良品率进行监控时用的控制图 ; n质量特性良与不良,通常服从二项分布; n当样本容量n足够大时,例如, 该分 布趋向于正态分布 w适用于全检零件或每个时期的检验样本 含量不同。 不良品率控制图(p图) w检验并记录数据 w计算平均不合格品率p w计算中心线和控制界限 w绘制控制图并进行分析 与n有关! 案例分析 w在制造复杂的发动机的端盖时,如果有某些 因素不合要求就判为不良品,在成品的全检 中,现要求对每班产品的不良率作控制图。 w每班检验的端盖总数就是样本量,共收集了 25班的检验数及不良数。 案例分析 1.收集的数见下表: 案例分析 根据公式计算各 样本组的上下控制限 在实际应用中,当各组 容量与其平均值相差不 超过正负25%时,可用 平均样本容量( )来计 算控制限. 案例分析 绘制控制图,并进行分析: 单位缺陷数控制图(u图) 适合用于对单位样本数量(如面积、容积、长度 、时间等)上缺陷数进行控制的场合; n通常服从泊松分布; n可近似与正态分布 来处理; 取样大小可以是不固定的,只要能计算出每单位 上的缺陷数即可; 单位缺陷数控制图(u图) n检验并记录数据 n计算平均单位缺陷数 n计算中心线和控制界限 n绘制控制图并进行分析 与n有关! 设n为样本大小,c为缺陷 数,则单位缺陷数为: u=c/n 案例分析 现需要对一注塑产品的缺陷进行控制图分析, 收集的数据记录如下表: 控制限的计算 在实际应用中,当各 组容量与其平均值 相差不超过正负 25%时,可用平均 样本容量( )来计 算控制限. 绘制控制图,并进行分析 案例分析 其他的控制图 不良品数控制图(pn图) 缺陷数控制图(c图) 不良品数控制图 (pn) w样本容量n恒定; w不合格品数是一个服从二项分布的随机 变量; w当np 5时近似服从正态分布n np, np(1-p) 不良品数控制图 确定数据样本容量n的大小,n常取50以上的数. 收集数据pn1,pn2, pn3 , , pnk ,k为样本数 计算控制中心和控制界限 绘制控制图并进行分析 缺陷数控制图( c图) w控制对象为一定单位(如一定长度、一定面积、一定 体积等)上面的缺陷数; w如铸件表面的气孔数、机器装好后发现的故障数; w产品上的缺陷数服从泊松分布; w近似为正态分布处理,均值为c,标准偏差为 缺陷数控制图 1.收集数据: 一般取2025组数据; 如果缺陷数较小,可将几个样本合为一个 , 使每组缺陷数c=0的情况尽量减少, 否则用来作控制图不适宜; 不同的缺陷应尽可能分层处理。 缺陷数控制图 2. 计算平均缺陷数 3. 计算中心线和控制界限: 4. 绘制控制图并进行分析 计量型数据吗? 性质上是否均匀 或不能按子组取样? 关心的是 不合格品率吗? 样本容量 是否恒定? 样本容量 是否恒定? 子组容量 9? np或p图p图 c或u图u图 是否 是 是 是 是 是 否 否 否 否 否 关心的是 单位零件缺陷数吗? 是 选择合适的控制图 运用控制图进行“控制” 广州今朝科技有限公司 guangzhou today technology ltd 内容提要 w控制图应用的两个阶段 w运用控制图判断过程受控/失控 w什么时候重新计算控制限 w使用控制图应注意的问题 w分析阶段 w控制阶段 控制图应用的二个阶段 分析阶段 w在控制图的设计阶段使用,主要用以确定 合理的控制界限 w每一张控制图上的控制界限都是由该图 上的数据计算出来 从分析阶段转入控制阶段 w在什么条件下分析阶段确定的控制限可 以转入控制阶段使用: n控制图是受控的 n过程能力能够满足生产要求 控制阶段 w控制图的控制界限由分析阶段确定 w控制图上的控制界限与该图中的数据无必 然联系 w使用时只需把采集到的样本数据或统计量 在图上打点就行 (1)所有样本点都在控制界限之内; (2)样本点均匀分布,位于中心线两 侧的样本点约各占1/2; (3)靠近中心线的样本点约占2/3; (4)靠近控制界限的样本点极少。 受控状态在控制图上表现 判断受控与失控 x ucl cl lcl t 控制图的受控状态 失控状态在控制图 上表现 明显特征是有: (1)一部分样本点超出控制界限 除此之外,如果没有样本点出界,但 (2)样本点排列和分布异常, 也说明生产过程状态失控。 判断受控与失控 (1)有多个样本点连续出现在中心线一侧 * 连续7个点或7点以上出现在中心线一侧; * 连续11点至少有10点出现在中心线一侧; * 连续14点至少有12点出现在中心线一侧。 x ucl cl lcl t 典型失控状态 (2)连续7点上升或下降 典型失控状态 (3)有较多的边界点 * 连续3点中有2点落在警戒区内; * 连续7点中有3点落在警戒区内; * 连续10点中有4点落在警戒区内 。 警戒区: 23的区域 典型失控状态 (4)样本点的周期性变化(包括阶段 的周期性、波动的周期性) ucl cl lcl 典型失控状态 (5)样本点分布的水平突变 x ucl cl lcl t x ucl cl lcl t 典型失控状态 (6)样本点的离散度变大 x ucl cl lcl t 典型失控状态 颜色管理(color management) w蓝色:未经检测的点 w绿色:检测后正常的 点 w红色:检测后异常点 w黄色 :异常点经过 异常编辑且有了改善 措施的点 重新计算控制限 控制图是根据稳定状态下的条件(人员、设备、原材料、工艺 方法、测量系统、环境)来制定的。如果上述条件变化,则必 须重新计算控制限,例如: 操作人员经过培训,操作水平显著提高; 设备更新、经过修理、更换零件; 改变工艺参数或采用新工艺; 改变测量方法或测量仪器; 采用新型原材料或其他原材料; 环境变化。 重新计算控制限 使用一段时间后检验控制图还是否适用 ,控制限是否过宽或过窄,否则需要重 新收集数据计算控制限; 过程能力值有大的变化时,需要重新收 集数据计算控制限。 控制界限与规格界限 w规格由客户或设计部门给出; w控制界限由过程的实际数据统计计算得出 ; w一般情况下,控制界限严于规格; 控制图的应用程序 过程能力研究 广州今朝科技有限公司 guangzhou today technology ltd 内容提要 w过程能力的基本概念 wcp、cpk与pp、ppk的含义与区别 wcp、cpk与pp、ppk的计算方法 w如何运用过程能力指数进行管理 过程能力的概念 过 程 能 力 指 处 于 统计稳 态 下 的 过 程 的 加 工 能 力,是过程 内部本身的性能,不考虑规范对 过程分布宽度是如何规定的。 过 程 能 力 w过程能力是以该过程产品质量特性值的变异 或波动来表示的; w根据3原理,在分布范围 3 内,包含了 99.73%的数据,接近于1,因此以3 ,即 6 为标准来衡量过程是否具有足够的精确 度和良好的经济特性的。过程能力记为b, 则 b= 6 过 程 sigma 估计sigma 计算sigma cp、cpk与pp、ppk的含义与 区别 wcp指数= wcp:(capability of process)过程能力指数 wcpk:修正的过程能力指数 规格宽度 工序宽度 过程能力指数 过程平均值和规格 中心的偏移 过程能力指数cpm 当规格中心与目标值不重合时的过程能力指数 过程平均值和目标 值的偏移 cp,cpk,cpm pp,ppk,ppm ppk与cpk npp: (performance of process)过程性能指数 ppk:修正的过程性能指数 案例分析 我们再来看前面的作控制图的案例 : 案例分析 w过程有一个异常点,是由于偶然因素造成 ,调查表明是该检验员当时委托他人代为 测量,而这代理人不适于操作精密测量设 备,可能读数不准确,也有可能伪造了数 据。 w剔除这个异常点,过程是受控的。 剔除异常点数据表 案例分析 根据这24个子组计算得: 计算得到的标准差=0.0019 案例分析 w规格宽度(要求)=0.016 w工序宽度(6 )=6 =0.0106 wcp=0.016/0.0106=1.5094 案例分析 由于存在一定的偏移,那么我们真正能做到多好 呢? cpk=min(cpu,cpl)=min(1.2612,1.7569)=1.2612 或者 cpk=cp(1-k)=1.5094(1-0.1625)=1.2612 案例分析 w我们实际做得有多好呢? pp=1.3699 ppk=1.1411 w这说明我们还可以做得更好 计数型的过程能力评价 w对于p,np图, 过程能力是通过过程平均 不合品率 来表示,当所有点都受控后才 计算该值. w对于c图,过程能力为 ,即固定容量n的 样本的缺陷数的平均值. w对于u图,过程能力为 ,即每单位缺陷 数的均值. cpk与不良数量一览表 cpppm 0.6071800 0.906900 1.002700 1.3363 2.001(0.0020) 4.50每十有1个零件 如何运用过程能力指数进行 管理 当cpk指数值降低代表要增加: n控制 n检查 n返工及报废, 在这种情况下,成本会增加,品质也会降低 , 生产能力可能不足。 如何运用过程能力指数进行 管理 w当cpk指数值增大,不良品减少,最重要是 产品/零件接近我们的“理想设计数值/目标” ,给予顾客最大满足感。 w当cpk指数值开始到达1.33或更高时对检验 工作可以减少,减少我们对运作审查成本 。 spc技术的其他工具 广州今朝科技有限公司 guangzhou today technology ltd 内容提要 w排列图(柏拉图) w分层分析法 w相关与回归分析 wspc知识回顾 pareto理论在品质管理中的 应用 目的:寻找主要问题或影响质量的主要原因 品质管理中主要应 用 w缺陷柏拉图 w异常柏拉图 w原因柏拉图 w措施柏拉图 某铸造车间生产一种铸件,质量不良项目有 气孔、未充满、偏心、形状不佳、裂纹、其 他等项。记录一周内某班所生产的产品不良 情况数据,并将不良项目作成累计频数和百 分比汇总表: 案例分析 铸件不良项目的排列图 pareto理论的作用 w找出“重要的少数” w因为80%的问题由 20%的潜在原因引起 分层分析法 w概念:将数据依照使用目的,按照其性质 、来源、影响因素等进行分类,把性质相 同、在同一生产条件下收集到的质量特性 数据归并在一起的方法。 w通常和其他方法一起使用。如将数据分层 之后再进行加工整理成分层排列图、分层 直方图、分层控制图等。 常用分层方法 w按不同时间、线别分,如按班次、不同生产线分 ; w按操作人员分,如按工人的级别; w按操作方法分,如按切削用量、温度、压力; w按原材料、产品分,如按供料单位、批次、产品 、客户等; w其他分层,如按检验手段、使用条件、气候条件 等。 案例分析 在柴油机装配中经常发生汽缸垫漏气现象,为解决这一问题 , 对该工序进行现场统计。 w收集数据:n=50,漏气数f=19 漏气率 p=f/n=19/50=0.38 即38% w分析原因:通过分析,认为造成漏气有两个原因: n该工序涂密封剂的工人a,b,c三人的操作方法有差 异; n汽缸垫分别由甲、乙两厂供应,原材料有差异; 因此,采用分层法列表进行分析: 分层列表 w初步分析结论: n汽缸漏气率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论