2018版高考数学复习第九章平面解析几何9.1直线的方程教师用书文新人教版.docx_第1页
2018版高考数学复习第九章平面解析几何9.1直线的方程教师用书文新人教版.docx_第2页
2018版高考数学复习第九章平面解析几何9.1直线的方程教师用书文新人教版.docx_第3页
2018版高考数学复习第九章平面解析几何9.1直线的方程教师用书文新人教版.docx_第4页
2018版高考数学复习第九章平面解析几何9.1直线的方程教师用书文新人教版.docx_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018版高考数学大一轮复习 第九章 平面解析几何 9.1 直线的方程教师用书 文 新人教版1直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角当直线l与x轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l倾斜角的范围是0,180)2斜率公式(1)若直线l的倾斜角90,则斜率ktan_.(2)P1(x1,y1),P2(x2,y2)在直线l上且x1x2,则l的斜率k.3直线方程的五种形式名称方程适用范围点斜式yy0k(xx0)不含直线xx0斜截式ykxb不含垂直于x轴的直线两点式不含直线xx1 (x1x2)和直线yy1 (y1y2)截距式1不含垂直于坐标轴和过原点的直线一般式AxByC0(A2B20)平面直角坐标系内的直线都适用【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)根据直线的倾斜角的大小不能确定直线的位置()(2)坐标平面内的任何一条直线均有倾斜角与斜率()(3)直线的倾斜角越大,其斜率就越大()(4)直线的斜率为tan ,则其倾斜角为.()(5)斜率相等的两直线的倾斜角不一定相等()(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(yy1)(x2x1)(xx1)(y2y1)表示()1(2016天津模拟)过点M(2,m),N(m,4)的直线的斜率等于1,则m的值为()A1 B4C1或3 D1或4答案A解析依题意得1,解得m1.2直线xya0的倾斜角为()A30 B60C150 D120答案B解析化直线方程为yxa,ktan .0180,60.3如果AC0且BC0,在y轴上的截距0,故直线经过第一、二、四象限,不经过第三象限4(教材改编)直线l:axy2a0在x轴和y轴上的截距相等,则实数a_.答案1或2解析令x0,得直线l在y轴上的截距为2a;令y0,得直线l在x轴上的截距为1,依题意2a1,解得a1或a2.5过点A(2,3)且在两坐标轴上的截距互为相反数的直线方程为_答案3x2y0或xy50解析当直线过原点时,直线方程为yx,即3x2y0;当直线不过原点时,设直线方程为1,即xya,将点A(2,3)代入,得a5,即直线方程为xy50.故所求直线的方程为3x2y0或xy50.题型一直线的倾斜角与斜率例1(1)(2016北京东城区期末)已知直线l的倾斜角为,斜率为k,那么“”是“k”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件(2)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为_答案(1)B(2)(,1,)解析(1)当时,k时,”是“k”的必要不充分条件,故选B.(2)如图,kAP1,kBP,k(, 1,)引申探究1若将本例(2)中P(1,0)改为P(1,0),其他条件不变,求直线l斜率的取值范围解P(1,0),A(2,1),B(0,),kAP,kBP.如图可知,直线l斜率的取值范围为.2若将本例(2)中的B点坐标改为(2,1),其他条件不变,求直线l倾斜角的范围解如图,直线PA的倾斜角为45,直线PB的倾斜角为135,由图象知l的倾斜角的范围为0,45135,180)思维升华直线倾斜角的范围是0,),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分与两种情况讨论由正切函数图象可以看出,当时,斜率k0,);当时,斜率不存在;当时,斜率k(,0)(2017开封月考)若直线l:ykx与直线2x3y60的交点位于第一象限,则直线的倾斜角的取值范围是_答案(,)解析直线l恒过定点(0,)作出两直线的图象,如图所示,从图中看出,直线l的倾斜角的取值范围应为(,)题型二求直线的方程例2根据所给条件求直线的方程:(1)直线过点(4,0),倾斜角的正弦值为;(2)经过点P(4,1),且在两坐标轴上的截距相等;(3)直线过点(5,10),到原点的距离为5.解(1)由题设知,该直线的斜率存在,故可采用点斜式设倾斜角为,则sin (00,b0),把点P(3,2)代入得12,得ab24,从而SAOBab12,当且仅当时等号成立,这时k,从而所求直线方程为2x3y120.方法二依题意知,直线l的斜率k存在且k0.则直线l的方程为y2k(x3)(k0,bc0,bc0Cab0 Dab0,bc0答案A解析由于直线axbyc0经过第一、二、四象限,所以直线存在斜率,将方程变形为yx.易知0,故ab0,bc0.6.如图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则 ()Ak1k2k3Bk3k1k2Ck3k2k1Dk1k3k2答案D解析直线l1的倾斜角1是钝角,故k10,直线l2与l3的倾斜角2与3均为锐角且23,所以0k3k2,因此k1k3k2,故选D.7若直线l的斜率为k,倾斜角为,而,则k的取值范围是_答案,0)解析当时,tan 1,k1.当时,tan 1或0,解得1a或a0.综上知,a0.10(2016山师大附中模拟)函数ya1x(a0,a1)的图象恒过定点A,若点A在mxny10(mn0)上,则的最小值为_答案4解析函数ya1x(a0,a1)的图象恒过定点A(1,1)把A(1,1)代入直线方程得mn1(mn0)()(mn)24(当且仅当mn时取等号),的最小值为4.11(2016太原模拟)已知两点A(1,2),B(m,3)(1)求直线AB的方程;(2)已知实数m1,1,求直线AB的倾斜角的取值范围解(1)当m1时,直线AB的方程为x1,当m1时,直线AB的方程为y2(x1)即x(m1)y2m30.(2)当m1时,;当m1时,m1,0)(0,k(,),)(,综合知,直线AB的倾斜角,12已知点P(2,1)(1)求过点P且与原点的距离为2的直线l的方程;(2)求过点P且与原点的距离最大的直线l的方程,最大距离是多少?(3)是否存在过点P且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由解(1)过点P的直线l与原点的距离为2,而点P的坐标为(2,1),显然,过点P(2,1)且垂直于x轴的直线满足条件,此时直线l的斜率不存在,其方程为x2.若斜率存在,设l的方程为y1k(x2),即kxy2k10.由已知得2,解得k.此时l的方程为3x4y100.综上可得直线l的方程为x2或3x4y100.(2)作图可得过点P与原点O的距离最大的直线是过点P且与PO垂直的直线,如图所示由lOP,得klkOP1,所以kl2.由直线方程的点斜式,得y12(x2),即2xy50.所以直线2xy50是过点P且与原点O的距离最大的直线,最大距离为.(3)由(2)可知,过点P不存在到原点的距离超过的直线,因此不存在过点P且到原点的距离为6的直线*13.如图,射线OA、OB分别与x轴正半轴成45和30角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在直线yx上时,求直线AB的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论