




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.2间接证明1.理解反证法的思考过程和特点,会运用反证法证明简单数学问题.(重点、难点)2.利用反证法证明时,对结论的假设否定.(易错点)基础初探教材整理间接证明阅读教材P49“例1”以上部分,完成下列问题.1.间接证明:(1)定义:不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.(2)常用方法:反证法.2.反证法(1)基本过程:反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).(2)证题步骤:1.判断正误:(1)反证法属于间接证明问题的一种方法.()(2)反证法的实质是否定结论导出矛盾.()(3)反证法的证明过程既可以是合情推理也可以是一种演绎推理.()(4)用反证法证明命题“三角形的内角至多有一个钝角”时,假设应该是至少两个钝角.()【答案】(1)(2)(3)(4)2.用反证法证明命题“三角形的内角中至少有一个角不大于60”时,正确的反设是_.【解析】“至少有一个角不大于60”的否定为“所有三角形的内角均大于60”.【答案】假设三个内角均大于60质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 小组合作型利用反证法证明否定性命题(1)用反证法证明:“若方程ax2bxc0,且a,b,c都是奇数,则方程没有整数根”,正确的假设是方程存在实数根x0为_.(2)已知三个正整数a,b,c成等比数列,但不成等差数列,求证:, , 不成等差数列.【自主解答】(1)要证明的结论是“方程没有整数根”,故应假设:方程存在实数根x0为整数.【答案】整数(2)假设, , 成等差数列,则2,即ac24b.又a,b,c成等比数列,所以b2ac,即b,所以ac24,所以ac-20,即(-)20,所以,从而abc,所以a,b,c可以成等差数列,这与已知中“a,b,c不成等差数列”相矛盾.原假设错误,故, , 不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.反证法证明问题的一般步骤再练一题1.(2016晋州高二检测)设数列an是公比为q的等比数列,Sn是它的前n项和.求证:数列Sn不是等比数列.【证明】假设数列Sn是等比数列,则SS1S3,即a(1q)2a1a1(1qq2),因为a10,所以(1q)21qq2,即q0,这与公比q0矛盾.所以数列Sn不是等比数列.用反证法证明存在性问题已知a,b,c(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于.【精彩点拨】“不能都大于”的含义为“至少有一个小于或等于”其对立面为“全部大于”.【自主解答】假设(1-a)b,(1-b)c,(1-c)a都大于.a,b,c(0,1),1-a0,1-b0,1-c0.同理,.三式相加得,即,矛盾.所以(1-a)b,(1-b)c,(1-c)a不能都大于.应用反证法常见的“结论词”与“反设词”当命题中出现“至多”“至少”等词语时,直接证明不易入手且讨论较复杂.这时,可用反证法证明,证明时常见的“结论词”与“反设词”如下:结论词反设词结论词反设词至少有一个一个也没有对所有x成立存在某个x0不成立至多有一个至少有两个对任意x不成立存在某个x0成立至少有n个至多有n-1个p或qp且q至多有n个至少有n1个p且qp或q再练一题2.已知a,b,c,dR,且abcd1,acbd1,求证:a,b,c,d中至少有一个是负数.【证明】假设a,b,c,d都是非负数,因为abcd1,所以(ab)(cd)1.又(ab)(cd)acbdadbcacbd,所以acbd1,这与已知acbd1矛盾,所以a,b,c,d中至少有一个是负数.探究共研型利用反证法证明唯一性命题探究1反证法解题的实质是什么?【提示】否定结论、导出矛盾,从而证明原结论正确.探究2应用反证法推出矛盾的推导过程中,可以把下列哪些作为条件使用_.结论的反设;已知条件;定义、公理、定理等;原结论.【提示】反证法的“归谬”是反证法的核心,其含义是从命题结论的假设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.【答案】已知直线m与直线a和b分别交于A,B两点,且ab.求证:过a,b,m有且只有一个平面.【精彩点拨】“有且只有”表示“存在且惟一”,因此在证明时,要分别从存在性和惟一性两方面来考虑.【自主解答】因为ab,所以过a,b有一个平面.又因为maA,mbB,所以Aa,Bb,所以A,B.又因为Am,Bm,所以m,即过a,b,m有一个平面,如图. 假设过a,b,m还有一个平面异于平面,则a,b,a,b,这与ab,过a,b有且只有一个平面矛盾.因此,过a,b,m有且只有一个平面.用反证法证明惟一性命题的一般思路证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,可先证“存在性”,由于假设“惟一性”结论不成立易导出矛盾,因此可用反证法证其惟一性.再练一题3.若函数f(x)在区间a,b上的图象连续,且f(a)0,且f(x)在a,b上单调递增,求证:f(x)在(a,b)内有且只有一个零点.【证明】由于f(x)在a,b上的图象连续,且f(a)0,即f(a)f(b)m,则f(n)f(m),即00,矛盾;若nm,则f(n)f(m),即02;a2b22.其中能推出“a,b中至少有一个大于1”的条件是_(填序号).【解析】假设a,b均不大于1,即a1,b1.则均有可能成立,故不能推出“a,b中至少有一个大于1”,故选.【答案】4.用反证法证明“一个三角形不能有两个直角”有三个步骤:ABC9090C180,这与三角形内角和为180矛盾,故假设错误;所以一个三角形不能有两个直角;假设ABC中有两个直角,不妨设A90,B90.上述步骤的正确顺序为_.【导学号:97220020】【解析】由反证法证明数学命题的步骤可知,上述步骤的顺序应为.【答案】5.若a,b,c互不相等,证明:三个方程ax22bxc0,bx22cxa0,cx22axb0至少有一个方程有两个相异实根.【证明】假设三个方程中都没有两个相异实根,则14b2-4ac0,24c2-4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年短视频平台内容风险识别与防范策略研究报告
- 现场发泡包装机知识培训课件
- 2025年基因治疗药物临床研发人才需求分析:市场前景与人才培养报告
- 吉林省永吉县实验高级中学2026届化学高二上期中监测试题含解析
- 炮车中学2026届高三上化学期中学业水平测试模拟试题含解析
- 2026届山西省大同市铁路一中高一化学第一学期期中联考试题含解析
- 2025年注册环保工程师考试 环境保护与可持续发展专项训练试卷
- 2025年注册化工工程师考试化工原理专项训练试卷:巩固化工基础知识
- 2026届浙江省温州树人中学高二化学第一学期期末教学质量检测试题含答案
- 民法典普法课件
- 2025-2030中国电流传感器行业市场发展趋势与前景展望战略研究报告
- 桩基工程监理评估报告
- 2025年供水管道工职业技能竞赛参考试指导题库300题(含答案)
- 预包装食品配送服务投标方案(技术方案)
- 第二章第二节女性生殖系统生理课件
- 宁波市慈溪市人民法院招聘审判辅助人员笔试真题2024
- 2021-2022学年人教版数学九年级下册相似三角形性质与判定 同步练习卷
- 《高尔夫基础培训》课件
- 城市管理辅助队伍服务投标方案
- 第五课+弘扬劳动精神、劳模精神、工匠精神【中职专用】中职思想政治《职业道德与法治》高效课堂(高教版2023·基础模块)
- 储罐及输油管道拆除方案
评论
0/150
提交评论