




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二、 两个重要极限 一、极限存在准则 第六节 极限存在准则 两个重要极限 第一章 1 1.准则1(数列极限存在的夹逼准则 ) 证: 由条件 (2) , 当时,当 时, 令 则当时, 有 由条件 (1) 即故 一、极限存在准则 2 例1. 证明 证: 利用夹逼准则 . 且 由 3 准则1 函数极限存在的夹逼准则 且 ( 利用定理1及数列的夹逼准则可证 ) 4 3. 准则2 单调有界数列必有极限 (单调有界原理 ) ( 证明略 ) 5 例2. 设证明数列 极限存在 . (P49) 证: 利用二项式公式(P270 ), 有 6 大 大 正 又 比较可知 7 根据准则 2 可知数列 记此极限为 e , e 为无理数 , 其值为 即 有极限 . 又 8 故极限存在, 例3 设 , 且 求 解: 设 则由递推公式有 数列单调递减有下界, 故 利用极限存在准则 9 圆扇形AOB的面积 二、 两个重要极限 证: 当 即 时, 显然有 AOB 的面积AOD的面积 故有 重要极限1 10 当时 注 11 例4. 求下列函数的极限 2 . 1. 12 解: 令则因此 原式 3. 4. 解: 令则因此 原式 13 主讲教师: 王升瑞 高等数学 第七讲 14 例5. 计算下列函数的极限 2. 3. 1. 15 证明: 证: 说明: 计算中注意利用 例6. 已知圆内接正 n 边形面积为 16 重要极限2. 证: 当时, 设则 17 当则从而有 故 说明: 此极限也可写为 时, 令 18 例7 已知求 C。 解: 原式 = 19 例8 求下列极限 解: 令则 说明 :若利用则 原式 解原式 20 解: I = 解: 原式 = 3. 21 5、 解法一: 解法二: 22 6、 解: 原式 = 说明: 若 则有 23 解: 原式 = 7、 24 内容小结 1. 数列极限存在的夹逼准则 函数极限存在的夹逼准则 2. 两个重要极限 或 注: 代表相同的表达式 25 思考与练习 1. 如何判断极限不存在? 方法1. 找一个趋于的子数列; 方法2. 找两个收敛于不同极限的子数列. 2. 已知, 求 时, 下述作法是否正确? 说明理由. 设由递推式两边取极限得 不对!此处 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保管未就业毕业生档案的协议书范文5篇
- 培训机构培训协议8篇
- 带宽和协议书
- 铁通安全考试题库及答案解析
- 给员工买保险协议书
- 网络安全能力认证ccsc题库及答案解析
- 肿瘤护理单选题库及答案解析
- 包盈利协议书
- 购销合同补充协议书
- 儿科护理常用技术题库及答案解析
- 个人贷款管理办法(2024年第3号)
- 2024-2025学年北师大版九年级数学上册第一次月考测试卷及答案
- 小学语文课程与教第二章:小学语文课程教材
- 苏教版一年级上册科学素材期末复习知识点总结
- 废铅酸电池中回收高纯度金属铅和α-PbO新工艺及其电化学性能研究
- 2024年高考数学一模试题分类汇编:立体几何(原卷版)
- 露天停车场施工方案
- 山东省青岛第三十九中学2023-2024学年九年级上学期月考数学试卷(10月份) (月考)
- HR如何筹划年终奖?(10大经典个税筹划案例)汇编
- GB/T 43063-2023集成电路CMOS图像传感器测试方法
- 作文格子纸-word版本
评论
0/150
提交评论