




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷龙马潭区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知复数z满足(3+4i)z=25,则=( )A34iB3+4iC34iD3+4i2 若函数则的值为( )A5 B C D23 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( ) A20+2B20+3C24+3D24+34 下列命题的说法错误的是( )A若复合命题pq为假命题,则p,q都是假命题B“x=1”是“x23x+2=0”的充分不必要条件C对于命题p:xR,x2+x+10 则p:xR,x2+x+10D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”5 已知集合,则下列关系式错误的是( )A B C D6 若如图程序执行的结果是10,则输入的x的值是( ) A0B10C10D10或107 设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或88 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D44959 已知为的三个角所对的边,若,则( )A23 B43 C31 D32【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力10如图,棱长为1的正方体ABCDA1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有( )三棱锥MDCC1的体积为定值 DC1D1MAMD1的最大值为90 AM+MD1的最小值为2ABCD11若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 12设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)二、填空题13已知,则函数的解析式为_.14设函数有两个不同的极值点,且对不等式恒成立,则实数的取值范围是 15设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是16已知ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(cb)sinC,且bc=4,则ABC的面积为17圆心在原点且与直线相切的圆的方程为_ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.18在空间直角坐标系中,设,且,则 .三、解答题19为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室? 20本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,nN的函数解析式;商店记录了50天该商品的日需求量单位:件,整理得下表:日需求量n89101112频数91115105假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间内的概率.21若f(x)是定义在(0,+)上的增函数,且对一切x,y0,满足f()=f(x)f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)f()222如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2()证明ADBE;()求多面体EFABCD体积的最大值23定义在R上的增函数y=f(x)对任意x,yR都有f(x+y)=f(x)+f(y),则(1)求f(0); (2)证明:f(x)为奇函数;(3)若f(k3x)+f(3x9x2)0对任意xR恒成立,求实数k的取值范围 24某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额龙马潭区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B解析:(3+4i)z=25,z=34i=3+4i故选:B2 【答案】D111【解析】试题分析:.考点:分段函数求值3 【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=22+=4+,底面周长C=23+=6+,高为2,故柱体的侧面积为:(6+)2=12+2,故柱体的全面积为:12+2+2(4+)=20+3,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键4 【答案】A【解析】解:A复合命题pq为假命题,则p,q至少有一个命题为假命题,因此不正确;B由x23x+2=0,解得x=1,2,因此“x=1”是“x23x+2=0”的充分不必要条件,正确;C对于命题p:xR,x2+x+10 则p:xR,x2+x+10,正确;D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”,正确故选:A5 【答案】A 【解析】试题分析:因为 ,而,即B、C正确,又因为且,所以,即D正确,故选A. 1考点:集合与元素的关系.6 【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x0,时x=10,解得:x=10当x0,时x=10,解得:x=10故选:D7 【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D8 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题9 【答案】C【解析】由已知等式,得,由正弦定理,得,则,所以,故选C10【答案】A【解析】解:A1B平面DCC1D1,线段A1B上的点M到平面DCC1D1的距离都为1,又DCC1的面积为定值,因此三棱锥MDCC1的体积V=为定值,故正确A1D1DC1,A1BDC1,DC1面A1BCD1,D1P面A1BCD1,DC1D1P,故正确当0A1P时,在AD1M中,利用余弦定理可得APD1为钝角,故不正确;将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在D1A1A中,D1A1A=135,利用余弦定理解三角形得AD1=2,故不正确因此只有正确故选:A11【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题12【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B二、填空题13【答案】【解析】试题分析:由题意得,令,则,则,所以函数的解析式为.考点:函数的解析式.14【答案】【解析】试题分析:因为,故得不等式,即,由于,令得方程,因 , 故,代入前面不等式,并化简得,解不等式得或,因此, 当或时, 不等式成立,故答案为. 考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数的到函数,令考虑判别式大于零,根据韦达定理求出的值,代入不等式,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.11115【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=633a33,06a618,两式相加即得3S921S9的取值范围是(3,21)故答案为:(3,21)【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题16【答案】 【解析】解:asinA=bsinB+(cb)sinC,由正弦定理得a2=b2+c2bc,即:b2+c2a2=bc,由余弦定理可得b2=a2+c22accosB,cosA=,A=60可得:sinA=,bc=4,SABC=bcsinA=故答案为:【点评】本题主要考查了解三角形问题考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题17【答案】【解析】由题意,圆的半径等于原点到直线的距离,所以,故圆的方程为.18【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算三、解答题19【答案】(1);(2)至少经过0.6小时才能回到教室。【解析】试题分析:(1)由题意:当时,y与t成正比,观察图象过点,所以可以求出解析式为,当时,y与t的函数关系为,观察图象过点,代入得:,所以,则解析式为,所以含药量y与t的函数关系为:;(2)观察图象可知,药物含量在段时间内逐渐递增,在时刻达到最大值1毫克,在时刻后,药物含量开始逐渐减少,当药物含量到0.25毫克时,有,所以,所以,所以至少要经过0.6小时,才能回到教室。试题解析:(1)依题意,当,可设y与t的函数关系式为ykt,易求得k10, y10t, 含药量y与时间t的函数关系式为(2)由图像可知y与t的关系是先增后减的,在时,y从0增加到1; 然后时,y从1开始递减。 ,解得t0.6, 至少经过0.6小时,学生才能回到教室 考点:1.分段函数;2.指数函数;3.函数的实际应用。20【答案】【解析】:当日需求量时,利润为;当需求量时,利润.所以利润与日需求量的函数关系式为:50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元. 若利润在区间内的概率为21【答案】 【解析】解:(1)在f()=f(x)f(y)中,令x=y=1,则有f(1)=f(1)f(1),f(1)=0;(2)f(6)=1,2=1+1=f(6)+f(6),不等式f(x+3)f()2等价为不等式f(x+3)f()f(6)+f(6),f(3x+9)f(6)f(6),即f()f(6),f(x)是(0,+)上的增函数,解得3x9,即不等式的解集为(3,9)22【答案】 【解析】()证明:BD为圆O的直径,ABAD,直线AE是圆O所在平面的垂线,ADAE,ABAE=A,AD平面ABE,ADBE;()解:多面体EFABCD体积V=VBAEFC+VDAEFC=2VBAEFC直线AE,CF是圆O所在平面的两条垂线,AECF,AEAC,AFACAE=CF=,AEFC为矩形,AC=2,SAEFC=2,作BMAC交AC于点M,则BM平面AEFC,V=2VBAEFC=2=多面体EFABCD体积的最大值为【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等23【答案】 【解析】解:(1)在f(x+y)=f(x)+f(y)中,令x=y=0可得,f(0)=f(0)+f(0),则f(0)=0,(2)令y=x,得f(xx)=f(x)+f(x),又f(0)=0,则有0=f(x)+f(x),即可证得f(x)为奇函数;(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,f(k3x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离职工资结算协议书范本
- 餐饮连锁企业厨师长职位竞聘及培训协议
- 餐饮品牌授权与餐厅承包合同
- 个人美容院租赁合同模板
- 代驾泊车服务合同模板(含事故处理)
- 餐饮店租赁承包合作协议
- 【课件】弹力+2024-2025学年人教版物理八年级下册+
- 产后抑郁生活护理常规
- 组织管理方法论
- 中班健康保护眼睛教案
- DB43-T 2927-2024 中医护理门诊建设与管理规范
- 青岛志远学校新初一分班数学试卷
- 护理三基技能培训课件
- 拒绝假努力让努力更高效-2023-2024学年热点主题班会大观园(全国通用)课件
- 新视野大学英语(第四版)读写教程2(思政智慧版)课件 Unit 4 Mission and exploration of our time Section A
- 五年级下册语文试题课外名著阅读之《三国演义》阅读训练(含答案)部编版
- 支原体感染后护理查房课件
- DB63-T 2220-2023 风积沙填筑路基技术规范
- 工程股权转让协议
- 高位截瘫的护理查房
- 北京大学考博英语历年真题及详解
评论
0/150
提交评论