




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3章 概率章末复习课网络构建核心归纳1.本章涉及的概念比较多,要真正理解它们的实质,搞清它们的区别与联系.了解随机事件发生的不确定性和频率的稳定性,要进一步了解概率的意义以及频率与概率的区别.2.应用互斥事件的概率加法公式,一定要注意首先确定事件彼此是否互斥,然后分别求出各事件发生的概率,再求和.求较复杂的概率通常有两种方法:一是将所求事件转化为彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)1P()(事件A与事件互为对立事件)求解.3.对于古典概型概率的计算,关键要分清基本事件的总数n与事件A包含的基本事件的个数m,再利用公式P(A)求出概率.有时需要用列举法把基本事件一一列举出来,在列举时必须按某一顺序,做到不重不漏.要点一随机事件的概率1.有关事件的概念事件概念确定性现象在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象随机现象在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象必然事件在一定条件下,必然会发生的事件,叫做必然事件不可能事件在一定条件下,肯定不会发生的事件,叫做不可能事件随机事件在一定条件下,可能发生也可能不发生的事件,叫做随机事件2.对于概率的定义应注意以下几点(1)求一个事件的概率的基本方法是通过大量的重复试验.(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率.(3)概率是频率的稳定值,而频率是概率的近似值.(4)概率反映了随机事件发生的可能性的大小.(5)必然事件的概率为1,不可能事件的概率为0,故0P(A)1.【例1】某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买.商品顾客人数甲乙丙丁1002172003008598(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为0.2,顾客同时购买甲和丙的概率可以估计为0.6,顾客同时购买甲和丁的概率可以估计为0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.【训练1】我国古代数学名著数书九章有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为_.解析1 534169,这批米内夹谷约为169石.答案169石要点二古典概型及其应用古典概型是一种最基本的概率模型,也是学习其他概率模型的基础,在高考题中,经常出现此种概率模型的题目.解题时要紧紧抓住古典概型的两个基本特点,即有限性和等可能性.另外,在求古典概型问题的概率时,往往需要我们将所有基本事件一一列举出来,以便确定基本事件总数及事件所包含的基本事件数.这就是我们常说的列举法.在列举时应注意按一定的规律、标准,保证不重不漏.【例2】一个盒子中装有完全相同的6个小球,分别标有16这六个数字,现在依次随机抽出两个小球,如果:(1)抽出的小球不放回;(2)抽出的小球放回,求这两个小球的数字相邻的概率.解对于抽出的小球放回的情形,所有基本事件的情况如下表:1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1)当抽取的小球不放回时,则不会包含(1,1),(2,2),(6,6)这些情况,因此共有情况36630(个),满足数字相邻的基本事件有10个,因此两个数字相邻的概率为.(2)对于抽出的小球放回的情形,共有表中所列的36个基本事件,两个数字相邻的基本事件共有10个,因此两个数字相邻的概率为.【训练2】有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示投掷第1颗正四面体玩具落在底面的数字,y表示投掷第2颗正四面体玩具落在底面的数字.(1)写出试验的基本事件;(2)求事件“落在底面的数字之和大于3”的概率;(3)求事件“落在底面的数字相等”的概率.解(1)这个试验的基本事件列表如下:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)由表知共有16个基本事件.(2)事件“落在底面的数字之和大于3”包括以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).故所求概率P.(3)事件“落在底面的数字相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).故所求概率P.要点三互斥事件与对立事件1.对互斥事件与对立事件概念的理解(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)利用集合的观点来看,如果事件AB,则两事件是互斥的,此时AB的概率就可用概率加法公式来求,即为P(AB)P(A)P(B);如果事件AB,则可考虑利用古典概型的定义来解决,不能直接利用概率加法公式.(3)利用集合的观点来看,如果事件AB,ABU,则两事件是对立的,此时AB就是必然事件,可由P(AB)P(A)P(B)1来求解P(A)或P(B).2.互斥事件概率的求法(1)若A1,A2,An互斥,则P(A1A2An)P(A1)P(A2)P(An).(2)利用这一公式求概率的步骤:要确定这些事件彼此互斥;先求出这些事件分别发生的概率,再求和.3.对立事件概率的求法P()P(A)P(A)P()1,由公式可得P(A)1P()(这里是A的对立事件,为必然事件).4.互斥事件的概率加法公式是解决概率问题的重要公式,它能把复杂的概率问题转化为较为简单的概率或转化为其对立事件的概率求解.【例3】将一枚均匀正方体骰子(每个面上分别标有点数1,2,3,4,5,6)先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率;(3)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y,点(x,y)在圆x2y215的内部的概率.解由列表法可得,将一枚骰子先后抛掷2次,向上的点数(m,n)的所有等可能基本事件有36种.(1)记“两数之(2)记“两数中至少有一个奇数”为事件B,则事件和为5”为事件A,则事件A包含的基本事件有(1,4),(2,3),(3,2),(4,1),共4种,所以P(A).B与“两数均为偶数”为对立事件,“两数均为偶数”包含的基本事件有(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6),共9种,所以P(B)1P()1.(3)记“点(x,y)在圆x2y215的内部”为事件C,则需x2y215,其包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8种,所以P(C).【训练3】投掷一个骰子的试验中,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A发生的概率为_.解析由于基本事件总数为6,故P(A),P(B),从而P()1P(B)1,又A与互斥,故P(A)P(A)P()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级写人作文我的新偶像450字9篇
- 辩论赛话题之环保作文(7篇)
- 我想如果有一天700字14篇
- 英国诗歌鉴赏入门:英语文学教学内容拓展
- 八月化妆品活动方案
- 公交党建活动方案
- 公交场站清理活动方案
- 关于节约自然资源的建议书550字9篇范文
- 公众号电影软件活动方案
- 公会赏花活动方案
- 中国工业清洗协会职业技能证考试(化学清洗)试题
- 山东省德州市宁津县房地产市场报告
- 苏州市五年级下学期期末数学试题题及答案
- CPK分析表的模板
- 《敬畏生命向阳而生》的主题班会
- 中华护理学会精神科专科护士理论考试试题
- 新能源电动汽车操作安全
- 中职生职业生涯规划课件PPT
- 《和谐与梦想》作业设计
- 企业清产核资报表
- 金融风险管理习题汇总第1-13章金融风险概述思考题-经济资本与风险调整绩效
评论
0/150
提交评论