




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【大高考】2017版高考数学一轮总复习 第7章 不等式、推理与证明 第5节 推理与证明高考AB卷 理合情推理与演绎推理(2016全国,15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_.解析由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.答案1和3合情推理与演绎推理1.(2014北京,8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人 C.4人D.5人解析学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙.一组学生中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B.答案B2.(2012江西,6)观察下列各式:ab1,a2b23,a3b34,a4b47,a5b511,则a10b10()A.28B.76 C.123D.199解析利用归纳法:ab1,a2b23,a3b3431,a4b4437,a5b57411,a6b611718,a7b7181129,a8b8291847,a9b9472976,a10b107647123.答案C3.(2015山东,11)观察下列各式:C40;CC41; CCC42;CCCC43;照此规律,当nN*时,C C C C_.解析观察等式,第1个等式右边为40411,第2个等式右边为41421,第3个等式右边为42431,第4个等式右边为43441,所以第n个等式右边为4n1.答案4n14.(2015福建,15)一个二元码是由0和1组成的数字串x1x2xn(nN*),其中xk(k1,2,n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x1x2x7的码元满足如下校验方程组:其中运算定义为000,011,101,110.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于_.解析()x4x5x6x711011,()x2x3x6x710010;()x1x3x5x710111.由()()知x5,x7有一个错误,()中没有错误,x5错误,故k等于5.答案55.(2013陕西,14)观察下列等式1211222312223261222324210照此规律,第n个等式可为_.解析左边共n项,每项的符号为(1)n1,通项为(1)n1n2.等式右边的值符号为(1)n1,各式为(1)n1(123n)(1)n1,第n个等式为12223242(1)n1n2(1)n1.答案12223242(1)n1n2(1)n16.(2013湖北,14)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n个三角形数为n2n.记第n个k边形数为N(n,k)(k3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)n2n,正方形数N(n,4)n2,五边形数N(n,5)n2n,六边形数N(n,6)2n2n,可以推测N(n,k)的表达式,由此计算N(10,24)_.解析由题中数据可猜想:含n2项的系数为首项是,公差是的等差数列,含n项的系数为首项是,公差是的等差数列,因此N(n,k)n2nn2n.故N(10,24)11n210n1110210101 000.答案1 0007.(2014陕西,14)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是_.解析三棱柱中5692;五棱锥中66102;立方体中68122,由此归纳可得FVE2.答案FVE28.(2012陕西,11)观察下列不等式1,1,1,照此规律,第五个不等式为_.解析先观察左边,第一个不等式为2项相加,第二个不等式为3项相加,第三个不等式为4项相加,则第五个不等式应为6项相加,右边分子为分母的2倍减1,分母即为所对应项数,故应填1.答案19.(2012湖北,13)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,99;3位回文数有90个:101,111,121,191,202,999.则(1)4位回文数有_个;(2)2n1(nN)位回文数有_个.解析(1)2位回文数均是不为0的自然数,故有9个;而对于3位回文数,首、末均相同且不为0,故有9种,而对于中间一数可含有0,故有10种,因此3位回文数有90种;对于4位回文数,首、末均相同且不为0,故有9种,对于中间两数则可含有0,故有10种,因此也有90种;(2)经归纳可得2n1位回文数有910n个.答案(1)90(2)910n10.(2013重庆,22)对正整数n,记In1,2,n,Pn.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并.解(1)当k4时,中有3个数与I7中的3个数重复,因此P7中元素的个数为77346.(2)先证:当n15时,Pn不能分成两个不相交的稀疏集的并.若不然,设A,B为不相交的稀疏集,使ABPnIn,不妨设1A,则因1322,故3A,即3B.同理6A,10B,又推得15A,但11542,这与A为稀疏集矛盾.再证P14符合要求,当k1时,I14可分成两个稀疏集之并,事实上,只要取A11,2,4,6,9,11,13,B13,5,7,8,10,12,14,则A1,B1为稀疏集,且A1B1I14.当k4时,集中除整数外剩下的数组成集,可分解为下面两稀疏集的并:A2,B2.当k9时,集中除正整数外剩下的数组成集,可分解为下面两稀疏集的并:A3,B3.最后,集C中的数的分母均为无理数,它与P14中的任何其他数之和都不是整数,因此,令AA1A2A3C,BB1B2B3,则A和B是不相交的稀疏集,且ABP14.综上,所求n的最大值为14.注:对P14的分拆方法不是唯一的.直接证明与间接证明11.(2014山东,4)用反证法证明命题“设a,b为实数,则方程x3axb0至少有一个实根”时,要做的假设是()A.方程x3axb0没有实根B.方程x3axb0至多有一个实根C.方程x3axb0至多有两个实根D.方程x3axb0恰好有两个实根解析至少有一个实根的否定是没有实根,故要做的假设是“方程x3axb0没有实根”.答案A12.(2013四川,15)设P1,P2,Pn为平面内的n个点,在平面内的所有点中,若点P到点P1,P2,Pn的距离之和最小,则称点P为点P1,P2,Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;直角三角形斜边的中点是该直角三角形三个顶点的中位点;若四个点A,B,C,D共线,则它们的中位点存在且唯一;梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是_(写出所有真命题的序号).解析由“中位点”可知,若C在线段AB上,则线段AB上任一点都为“中位点”,C也不例外,故正确;对于假设在等腰RtABC中,ACB90,如图所示,点P为斜边AB中点,设腰长为2,则|PA|PB|PC|AB|3,而若C为“中位点”,则|CB|CA|4|AC|OA|OC|,同理在MBD中,|MB|MD|BD|OB|OD|,则得,|MA|MB|MC|MD|OA|OB|OC|OD|,故O为梯形内唯一中位点,是正确的.答案13.(2012福建,17)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:sin213cos217sin 13cos 17;sin215cos215sin 15cos 15;sin218cos212sin 18cos 12;sin2(18)cos248sin(18)cos 48;sin2(25)cos255sin(25)cos 55.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解(1)选择式,计算如下:sin215cos215sin 15cos 151sin 301.(2)三角恒等式为sin2cos2(30)sin cos(30).证明如下:sin2cos2(30)sin cos(30)sin2(cos 30cos sin 30sin )2sin (cos 30cos sin 30sin )sin2cos2sin cos sin2sin cos sin2sin2 cos2.数学归纳法14.(2015江苏,23)已知集合X1,2,3,Yn1,2,3,n(nN*),设Sn(a,b)|a整除b或b整除a,aX,bYn,令f(n)表示集合Sn所含元素的个数.(1)写出f(6)的值;(2)当n6时,写出f(n)的表达式,并用数学归纳法证明.解(1)f(6)13.(2)当n6时,f(n)(tN*).下面用数学归纳法证明:当n6时,f(6)6213,结论成立;假设nk(k6)时结论成立,那么nk1时,Sk1在Sk的基础上新增加的元素在(1,k1),(2,k1),(3,k1)中产生,分以下情形讨论:1)若k16t,则k6(t1)5,此时有f(k1)f(k)3k23(k1)2,结论成立;2)若k16t1,则k6t,此时有f(k1)f(k)1k21(k1)2,结论成立;3)若k16t2,则k6t1,此时有f(k1)f(k)2k22(k1)2,结论成立;4)若k16t3,则k6t2,此时有f(k1)f(k)2k22(k1)2,结论成立;5)若k16t4,则k6t3,此时有f(k1)f(x)2k22(k1)2,结论成立;6)若k16t5,则k6t4,此时有f(k1)f(k)1k21(k1)2,结论成立.综上所述,结论对满足n6的自然数n均成立.15.(2014陕西,21)设函数f(x)ln (1x),g(x)xf(x),x0,其中f(x)是f(x)的导函数.(1)令g1(x)g(x),gn1(x)g(gn(x),nN*,求gn(x)的表达式;(2)若f(x)ag(x)恒成立,求实数a的取值范围;(3)设nN*,比较g(1)g(2)g(n)与nf(n)的大小,并加以证明.解由题设得,g(x)(x0).(1)由已知,g1(x),g2(x)g(g1(x),g3(x),可得gn(x).下面用数学归纳法证明.当n1时,g1(x),结论成立.假设nk时结论成立,即gk(x).那么,当nk1时,gk1(x)g(gk(x),即结论成立.由可知,结论对nN成立.(2)已知f(x)ag(x)恒成立,即ln (1x)恒成立.设(x)ln (1x)(x0),则(x),当a1时,(x)0(仅当x0,a1时等号成立),(x)在0,)上单调递增,又(0)0,(x)0在0,)上恒成立,a1时,ln (1x)恒成立(仅当x0时等号成立).当a1时,对x(0,a1有(x)0,(x)在(0,a1上单调递减,(a1)1时,存在x0,使(x)nln (n1).证明如下:法一上述不等式等价于,x0.令x,nN,则ln .下面用数学归纳法证明.当n1时,ln 2,结论成立.假设当nk时结论成立,即ln (k1).那么,当nk1时,ln (k1)ln (k1)ln ln (k2),即结论成立.由可知,结论对nN成立.法二上述不等式等价于,x0.令x,nN,则ln .故有ln 2ln 1,ln 3ln 2,ln(n1)ln n,上述各式相加可得ln (n1),结论得证.法三如图,dx是由曲线y,xn及x轴所围成的曲边梯形的面积,而是图中所示各矩形的面积和.dx(1)dxnln (n1),结论得证.16.(2014重庆,22)设a11,an1b(nN*).(1)若b1,求a2,a3及数列an的通项公式;(2)若b1,问:是否存在实数c使得a2nca2n1对所有nN*成立?证明你的结论.解(1)法一a22,a31,再由题设条件知(an11)2(an1)21.从而(an1)2是首项为0公差为1的等差数列,故(an1)2n1,即an1(nN*).法二a22,a31,可写为a11,a21,a31.因此猜想an1.下面用数学归纳法证明上式:当n1时结论显然成立.假设nk时结论成立,即ak1.则ak1111
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拼音线描美术课件
- 产后盆底功能康复治疗
- 联想集团员工激励管理实践分析
- (统编版)语文三年级上册口语交际:名字里的故事 课件
- 补肺汤解析与应用
- 护理心理案例分析与实践应用
- 大学生秋季传染病预防指南
- 饮食护理的种类
- 肺癌的护理查房
- 初中班主任年度个人工作总结模版
- 特种设备操作人员培训管理制度范文(2篇)
- 医院病历的管理制度
- 【MOOC】大学生创新创业教育-云南大学 中国大学慕课MOOC答案
- 《SQL优化策略》课件
- 剪映专业版教学课件
- 2023-2024学年《软件设计与体系结构》模拟试卷及答案解析
- 智能咖啡机行业营销策略方案
- 2024年部编版九年级语文上册电子课本(高清版)
- 《鱼纹话吉祥》 课件 2024-2025学年岭南美版(2024) 初中美术七年级上册
- 小米智能家居合同模板
- 工行个人房屋贷款协议模板
评论
0/150
提交评论