




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题一 函数与导数、不等式 第2讲 不等式问题练习 理一、填空题1.(2015苏州调研)已知f(x)则不等式f(x2x1)12的解集是_.解析依题意得,函数f(x)是R上的增函数,且f(3)12,因此不等式f(x2x1)12等价于x2x13,即x2x20,由此解得1x2.因此,不等式f(x2x1)12的解集是(1,2).答案(1,2)2.若点A(m,n)在第一象限,且在直线1上,则mn的最大值是_.解析因为点A(m,n)在第一象限,且在直线1上,所以m,n0,且1,所以,所以,即mn3,所以mn的最大值为3.答案33.(2016苏北四市模拟)已知函数f(x)若f(a)f(a)2f(1),则实数a的取值范围是_.解析f(a)f(a)2f(1)或即或解得0a1,或1a0.故1a1.答案1,14.已知函数f(x)那么不等式f(x)1的解集为_.解析当x0时,由log3x1可得x3,当x0时,由1可得x0,不等式f(x)1的解集为(,03,).答案(,03,)5.(2016南京、盐城模拟)若x,y满足不等式组则的最小值是_.解析不等式组所表示的平面区域如图阴影部分所示,表示原点(0,0)到此区域内的点P(x,y)的距离.显然该距离的最小值为原点到直线x2y20的距离.故最小值为.答案6.已知当x0时,2x2mx10恒成立,则m的取值范围为_.解析由2x2mx10,得mx2x21,因为x0,所以m2x.而2x22.当且仅当2x,即x时取等号,所以m2.答案(2,)7.设目标函数zxy,其中实数x,y满足若z的最大值为12,则z的最小值为_.解析作出不等式组所表示的可行域如图阴影所示,平移直线xy0,显然当直线过点A(k,k)时,目标函数zxy取得最大值,且最大值为kk12,则k6,直线过点B时目标函数zxy取得最小值,点B为直线x2y0与y6的交点,即B(12,6),所以zmin1266.答案68.(2016泰州调研)已知x0,y0,且1,若x2ym22m恒成立,则实数m的取值范围为_.解析记tx2y,由不等式恒成立可得m22mtmin.因为1,所以tx2y(x2y)4.而x0,y0,所以24(当且仅当,即x2y时取等号).所以t4448,即tmin8.故m22m8,即(m2)(m4)0.解得4m2.答案(4,2)二、解答题9.(2015苏北四市调研)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为(弧度).(1)求关于x的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值?解(1)设扇环的圆心角为,则30(10x)2(10x),所以(0x10).(2)花坛的面积为(102x2)(5x)(10x)x25x50(0x10).装饰总费用为9(10x)8(10x)17010x,所以花坛的面积与装饰总费用的比y,令t17x,则y,当且仅当t18时取等号,此时x1,.答:当x1时,花坛的面积与装饰总费用的比最大.10.已知函数f(x).(1)若f(x)k的解集为x|x3,或x2,求k的值;(2)对任意x0,f(x)t恒成立,求t的取值范围.解(1)f(x)kkx22x6k0.由已知x|x3,或x2是其解集,得kx22x6k0的两根是3,2.由根与系数的关系可知(2)(3),即k.(2)因为x0,f(x),当且仅当x时取等号.由已知f(x)t对任意x0恒成立,故t,即t的取值范围是.11.(1)解关于x的不等式x22mxm10;(2)解关于x的不等式ax2(2a1)x20.解(1)原不等式对应方程的判别式(2m)24(m1)4(m2m1).当m2m10,即m或m时,由于方程x22mxm10的两根是m,所以原不等式的解集是x|xm,或xm;当0,即m时,不等式的解集为x|xR,且xm;当0,即m时,不等式的解集为R.综上,当m或m时,不等式的解集为x|xm,或xm;当m时,不等式的解集为x|xR,且xm;当m时,不等式的解集为R.(2)原不等式可化为(ax1)(x2)0.当a0时,原不等式可以化为a(x2)0,根据不等式的性质,这个不等式等价于(x2)0.因为方程(x2)0的两个根分别是2,所以当0a时,2,则原不等式的解集是;当a时,原不等式的解集是;当a时,2,则原不等式的解集是.当a0时,原不等式为(x2)0,解得x2,即原不等式的解集是x|x2.当a0时,原不等式可以化为a(x2)0,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年薄板坯连铸连轧设备项目发展计划
- 2024年浙江省台州市【辅警协警】笔试真题(附答案)
- 供氧机物理知识培训内容课件
- 2025年船员消防演练写入航航日志范文
- 2026届西藏自治区林芝市第二高级中学化学高三第一学期期中调研试题含解析
- 2025年天然胶粘剂:动物胶项目合作计划书
- 2026届江苏吴江青云中学高一化学第一学期期末检测试题含解析
- 2025年光电电视测斜仪项目发展计划
- 2025至2030长通滤波器行业产业运行态势及投资规划深度研究报告
- 2025至2030中国锰锂电池行业产业运行态势及投资规划深度研究报告
- 儿童腺病毒肺炎
- 2025至2030中国UV打印机行业市场现状分析及竞争格局与投资发展报告
- 口腔科护士正确吸唾操作规范
- 中学升旗管理制度
- 2025至2030中国氢化可的松口服片行业项目调研及市场前景预测评估报告
- 消防器材介绍课件
- 可研委托合同(合同范本)5篇
- 2025上半年高级软件水平考试《系统分析师(案例分析)》真题及解析
- 《电解质失衡课件讲解》课件
- 景区团建合同协议书
- 收费公路联网系统网络安全技术要求(试行)
评论
0/150
提交评论