




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
开放性问题【专题点拨】开放探索问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,或者条件、结论有待探求、补充等.【解题策略】在解决开放探索问题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 【典例解析】类型一:条件开放型问题例题1:(2016山东省滨州市14分)如图,已知抛物线y=x2x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由【考点】二次函数综合题【专题】压轴题;函数及其图象【分析】(1)分别令y=0,x=0,即可解决问题(2)由图象可知AB只能为平行四边形的边,易知点E坐标(7,)或(5,),由此不难解决问题(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题【解答】解:(1)令y=0得x2x+2=0,x2+2x8=0,x=4或2,点A坐标(2,0),点B坐标(4,0),令x=0,得y=2,点C坐标(0,2)(2)由图象可知AB只能为平行四边形的边,AB=EF=6,对称轴x=1,点E的横坐标为7或5,点E坐标(7,)或(5,),此时点F(1,),以A,B,E,F为顶点的平行四边形的面积=6=(3)如图所示,当C为顶点时,CM1=CA,CM2=CA,作M1NOC于N,在RTCM1N中,CN=,点M1坐标(1,2+),点M2坐标(1,2)当M3为顶点时,直线AC解析式为y=x+1,线段AC的垂直平分线为y=x,点M3坐标为(1,1)当点A为顶点的等腰三角形不存在综上所述点M坐标为(1,1)或(1,2+)或(1.2)【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题变式训练1:(2016四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由类型二: 结论开放型问题例题2:(2016湖北随州3分)二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c3b;(3)8a+7b+2c0;(4)若点A(3,y1)、点B(,y2)、点C(,y3)在该函数图象上,则y1y3y2;(5)若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x2其中正确的结论有()A2个 B3个 C4个 D5个【解析】二次函数图象与系数的关系(1)正确根据对称轴公式计算即可(2)错误,利用x=3时,y0,即可判断(3)正确由图象可知抛物线经过(1,0)和(5,0),列出方程组求出a、b即可判断(4)错误利用函数图象即可判断(5)正确利用二次函数与二次不等式关系即可解决问题【解答】解:(1)正确 =2,4a+b=0故正确(2)错误x=3时,y0,9a3b+c0,9a+c3b,故(2)错误(3)正确由图象可知抛物线经过(1,0)和(5,0),解得,8a+7b+2c=8a28a10a=30a,a0,8a+7b=2c0,故(3)正确(4)错误,点A(3,y1)、点B(,y2)、点C(,y3),2=,2()=,点C离对称轴的距离近,y3y2,a0,32,y1y2y1y2y3,故(4)错误(5)正确a0,(x+1)(x5)=3/a0,即(x+1)(x5)0,故x1或x5,故(5)正确正确的有三个,故选B变式训练2:(2016黑龙江齐齐哈尔3分)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2+bx+c=0的两个根是x1=1,x2=3;3a+c0当y0时,x的取值范围是1x3当x0时,y随x增大而增大其中结论正确的个数是()A4个B3个C2个D1个类型三: 解题策略开放型例题3:(2014 年湖北襄阳)如图 Z3-1,在ABC 中,点 D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:EBODCO;BECD;OBOC.(1)上述三个条件中,由哪两个条件可以判定ABC 是等腰三角形?(用序号写出所有成立的情形)(2)选择其中的成立条件进行证明。【解析】:(1);.(2)选证明如下:EBODCO,EOBDOC,BECD,BOECOD(AAS)BOCO.OBCOCB.EBOOBCDCOOCB.即ABCACB.ABAC.ABC 是等腰三角形【点评】对题设信息进行全面分析,综合比较,判断优劣,从中得出适合题意的最佳方案。变式训练3:在一个服装厂里有大量形状为等腰直角三角形的边角布料.现找出其中的一种,测得C90,ACBC4,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在ABC 的边上,且扇形的弧与ABC 的其他边相切.请设计出所有符合题意的方案示意图,并求出扇形的半径.(只要求画出扇形,并直接写出扇形半径)【能力检测】1. (2016山东省济宁市3分)如图,ABC中,ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: ,使AEHCEB2. (2015荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由3. (2016四川内江)(12分)如图15,已知抛物线C:yx23xm,直线l:ykx(k0),当k1时,抛物线C与直线l只有一个公共点(1)求m的值;(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y3xb交于点P,且,求b的值;(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否存在实数k使SAPQSBPQ,若存在,求k的值;若不存在,说明理由xyOl1QPBAl图15xyOl1QPBAl答案图CED4. (2016广西南宁)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x2交于B,C两点(1)求抛物线的解析式及点C的坐标;(2)求证:ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MNx轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由5. (2016云南省昆明市)如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使MQC为等腰三角形且MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由【参考答案】变式训练1:(2016四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由【考点】二次函数综合题【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)连接BC,则ABC的面积是不变的,过P作PMy轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于AGP=GNC+GCN,所以当AGB和NGC相似时,必有AGB=CGB=90,则可证得AOCNOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,抛物线解析式为y=x22x3;(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在y=x22x3中,令y=0可得0=x22x3,解得x=1或x=3,A点坐标为(1,0),AB=3(1)=4,且OC=3,SABC=ABOC=43=6,B(3,0),C(0,3),直线BC解析式为y=x3,设P点坐标为(x,x22x3),则M点坐标为(x,x3),P点在第四限,PM=x3(x22x3)=x2+3x,SPBC=PMOH+PMHB=PM(OH+HB)=PMOB=PM,当PM有最大值时,PBC的面积最大,则四边形ABPC的面积最大,PM=x2+3x=(x)2+,当x=时,PMmax=,则SPBC=,此时P点坐标为(,),S四边形ABPC=SABC+SPBC=6+=,即当P点坐标为(,)时,四边形ABPC的面积最大,最大面积为;(3)如图2,设直线m交y轴于点N,交直线l于点G,则AGP=GNC+GCN,当AGB和NGC相似时,必有AGB=CGB,又AGB+CGB=180,AGB=CGB=90,ACO=OBN,在RtAON和RtNOB中RtAONRtNOB(ASA),ON=OA=1,N点坐标为(0,1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,直线m解析式为y=x1,即存在满足条件的直线m,其解析式为y=x1【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等在(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大变式训练2:(2016黑龙江齐齐哈尔3分)如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2+bx+c=0的两个根是x1=1,x2=3;3a+c0当y0时,x的取值范围是1x3当x0时,y随x增大而增大其中结论正确的个数是()A4个B3个C2个D1个【解析】二次函数图象与系数的关系利用抛物线与x轴的交点个数可对进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对进行判断;由对称轴方程得到b=2a,然后根据x=1时函数值为负数可得到3a+c0,则可对进行判断;根据抛物线在x轴上方所对应的自变量的范围可对进行判断;根据二次函数的性质对进行判断【解答】解:抛物线与x轴有2个交点,b24ac0,所以正确;抛物线的对称轴为直线x=1,而点(1,0)关于直线x=1的对称点的坐标为(3,0),方程ax2+bx+c=0的两个根是x1=1,x2=3,所以正确;x=1,即b=2a,而x=1时,y0,即ab+c0,a+2a+c0,所以错误;抛物线与x轴的两点坐标为(1,0),(3,0),当1x3时,y0,所以错误;抛物线的对称轴为直线x=1,当x1时,y随x增大而增大,所以正确故选B变式训练3:在一个服装厂里有大量形状为等腰直角三角形的边角布料.现找出其中的一种,测得C90,ACBC4,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在ABC 的边上,且扇形的弧与ABC 的其他边相切.请设计出所有符合题意的方案示意图,并求出扇形的半径.(只要求画出扇形,并直接写出扇形半径)【解析】:由题意,考虑圆心在顶点、直角边和斜边上,设计出符合题意的方案示意图如图 所示四种方案: 半径分别是,。【点评】策略开放题要结合分类讨论思想来解题,先选择一个分类的标准,再进行讨论解题,做到不重不漏.【能力检测】1. (2016山东省济宁市3分)如图,ABC中,ADBC,CEAB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使AEHCEB【解析】全等三角形的判定开放型题型,根据垂直关系,可以判断AEH与CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了【解答】解:ADBC,CEAB,垂足分别为D、E,BEC=AEC=90,在RtAEH中,EAH=90AHE,又EAH=BAD,BAD=90AHE,在RtAEH和RtCDH中,CHD=AHE,EAH=DCH,EAH=90CHD=BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE可证AEHCEB故填空答案:AH=CB或EH=EB或AE=CE2. (2015荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由【解答】(1)证明:在正方形ABCD中,AB=BC,ABP=CBP=45,在ABP和CBP中,ABPCBP(SAS),PA=PC,PA=PE,PC=PE;(2)由(1)知,ABPCBP,BAP=BCP,DAP=DCP,PA=PC,DAP=E,DCP=E,CFP=EFD(对顶角相等),180PFCPCF=180DFEE,即CPF=EDF=90;(3)在正方形ABCD中,AB=BC,ABP=CBP=45,在ABP和CBP中,ABPCBP(SAS),PA=PC,BAP=BCP,PA=PE,PC=PE,DAP=DCP,PA=PC,DAP=E,DCP=ECFP=EFD(对顶角相等),180PFCPCF=180DFEE,即CPF=EDF=180ADC=180120=60,EPC是等边三角形,PC=CE,AP=CE;3. (2016四川内江)(12分)如图15,已知抛物线C:yx23xm,直线l:ykx(k0),当k1时,抛物线C与直线l只有一个公共点(1)求m的值;(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y3xb交于点P,且,求b的值;(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否存在实数k使SAPQSBPQ,若存在,求k的值;若不存在,说明理由xyOl1QPBAl图15xyOl1QPBAl答案图CED【解析】二次函数与一元二次方程的关系,三角形的相似,推理论证的能力。【解答】:(1)当k1时,抛物线C与直线l只有一个公共点,方程组有且只有一组解 消去y,得x24xm0,所以此一元二次方程有两个相等的实数根0,即(4)24m0m4 (2)如图,分别过点A,P,B作y轴的垂线,垂足依次为C,D,E,则OACOPD,同理,22,即 解方程组得x,即PD由方程组消去y,得x2(k3)x40AC,BE是以上一元二次方程的两根,ACBEk3,ACBE4 解得b8(3)不存在理由如下: 假设存在,则当SAPQSBPQ时有APPB,于是PDACPEPD,即ACBE2PD由(2)可知ACBEk3,PD,k32,即(k3)216解得k1(舍去k7) 当k1时,A,B两点重合,QAB不存在不存在实数k使SAPQSBPQ 4. (2016广西南宁)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x2交于B,C两点(1)求抛物线的解析式及点C的坐标;(2)求证:ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MNx轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由【解析】二次函数综合题(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得ABO=CBO=45,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当MON和ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标【解答】解:(1)顶点坐标为(1,1),设抛物线解析式为y=a(x1)2+1,又抛物线过原点,0=a(01)2+1,解得a=1,抛物线解析式为y=(x1)2+1,即y=x2+2x,联立抛物线和直线解析式可得,解得或,B(2,0),C(1,3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,ABO=CBO=45,即ABC=90,ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,x2+2x),ON=|x|,MN=|x2+2x|,由(2)在RtABD和RtCEB中,可分别求得AB=,BC=3,MNx轴于点NABC=MNO=90,当ABC和MNO相似时有=或=,当=时,则有=,即|x|x+2|=|x|,当x=0时M、O、N不能构成三角形,x0,|x+2|=,即x+2=,解得x=或x=,此时N点坐标为(,0)或(,0);当=时,则有=,即|x|x+2|=3|x|,|x+2|=3,即x+2=3,解得x=5或x=1,此时N点坐标为(1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(1,0)或(5,0)【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理、相似三角形的性质及分类讨论等在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库优惠套餐活动方案
- 仓库走访活动方案
- 【浦银国际】2025年中期展望:渗透率保持快速上扬智能辅助驾驶劲草逢春
- 仙游水利局活动方案
- 代表活动小组活动方案
- 北京市丰台区2023-2024学年五年级下学期数学期末试卷(含答案)
- 价值体现在岗位活动方案
- 企业元宵线上活动方案
- 改性无水磷石膏增强高密度聚乙烯(HDPE-PG)六棱结构壁管材编制说明
- 企业中层聚会活动方案
- 实习三方协议电子版(2025年版)
- 数智融合:媒体发展的未来之路
- 肾病综合征病人的护理邵启轩
- 2024年江苏省盐城市中考地理试卷(含答案)
- 《生物电化学》课件
- 《鸡的常见品种》课件
- 第9课 近代西方的法律与教化 说课稿-2024-2025学年高二上学期历史统编版(2019)选择性必修1国家制度与社会治理
- 成人手术后疼痛评估与护理团体标准
- 高等数学基础-007-国开机考复习资料
- 四川省英语高考试题及解答参考(2025年)
- 《传染病防治法》课件
评论
0/150
提交评论