浙江专用高考数学复习专题七数学思想方法第2讲分类讨论思想转化与化归思想练习.docx_第1页
浙江专用高考数学复习专题七数学思想方法第2讲分类讨论思想转化与化归思想练习.docx_第2页
浙江专用高考数学复习专题七数学思想方法第2讲分类讨论思想转化与化归思想练习.docx_第3页
浙江专用高考数学复习专题七数学思想方法第2讲分类讨论思想转化与化归思想练习.docx_第4页
浙江专用高考数学复习专题七数学思想方法第2讲分类讨论思想转化与化归思想练习.docx_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题七 数学思想方法 第2讲 分类讨论思想、转化与化归思想练习一、选择题1.等比数列an中,a37,前3项之和S321,则公比q的值是()A.1 B.C.1或 D.1或解析当公比q1时,a1a2a37,S33a121,符合要求.当q1时,a1q27,21,解之得,q或q1(舍去).综上可知,q1或.答案C2.过双曲线1(a0,b0)上任意一点P,引与实轴平行的直线,交两渐近线于R,Q两点,则的值为()A.a2 B.b2 C.2ab D.a2b2解析当直线PQ与x轴重合时,|a,故选A.答案A3.函数f(x)2xx32在区间(0,1)内的零点个数是()A.0 B.1 C.2 D.3解析法一函数f(x)2xx32在区间(0,1)内的零点个数即函数y12x2与y2x3的图象在区间(0,1)内的交点个数.作图,可知在(0,)内最多有一个交点,故排除C,D项;当x0时,y11y20,当x1时,y10y21,因此在区间(0,1)内一定会有一个交点,所以A项错误.选B.法二因为f(0)1021,f(1)21321,所以f(0)f(1)0.又函数f(x)在(0,1)内单调递增,所以f(x)在(0,1)内的零点个数是1.答案B4.已知函数f(x)ln xx1,g(x)x22bx4,若对任意的x1(0,2),任意的x21,2,不等式f(x1)g(x2)恒成立,则实数b的取值范围是()A. B.(1,)C. D.解析依题意,问题等价于f(x1)ming(x2)max,f(x)ln xx1(x0),所以f(x).由f(x)0,解得1x3,故函数f(x)单调递增区间是(1,3),同理得f(x)的单调递减区间是(0,1)和(3,),故在区间(0,2)上,x1是函数f(x)的极小值点,这个极小值点是唯一的,所以f(x1)minf(1).函数g(x2)x2bx24,x21,2.当b1时,g(x2)maxg(1)2b5;当1b2时,g(x2)maxg(b)b24;当b2时,g(x2)maxg(2)4b8.故问题等价于或或解第一个不等式组得b1,解第二个不等式组得1b,第三个不等式组无解.综上所述,b的取值范围是.故选A.答案A二、填空题5.若数列an的前n项和Sn3n1,则它的通项公式an_.解析当n2时,anSnSn13n1(3n11)23n1;当n1时,a1S12,也满足式子an23n1,数列an的通项公式为an23n1.答案23n16.在ABC中,点M,N满足2,若xy,则x_,y_.解析不妨设ACAB,有AB4,AC3,以A为坐标原点,AB,AC所在直线分别为x轴,y轴建立平面直角坐标系,如图所示.则A(0,0),B(4,0),C(0,3),M(0,2),N,那么,(4,0),(0,3),由xy,可得x(4,0)y(0,3),即(4x,3y),则有,解得答案7.设F1,F2为椭圆1的两个焦点,P为椭圆上一点.已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|PF2|,则的值为_.解析若PF2F190,则|PF1|2|PF2|2|F1F2|2,|PF1|PF2|6,|F1F2|2,解得|PF1|,|PF2|,.若F2PF190,则|F1F2|2|PF1|2|PF2|2|PF1|2(6|PF1|)2,解得|PF1|4,|PF2|2,2.综上所述,2或.答案2或8.已知a为正常数,若不等式1对一切非负实数x恒成立,则a的最大值为_.解析原不等式即1(x0),(*)令t,t1,则xt21,所以(*)式可化为1t对t1恒成立,所以1对t1恒成立,又a为正常数,所以a(t1)2min4,故a的最大值是4.答案4三、解答题9.数列an中,a18,a42,且满足an22an1an0.(1)求数列的通项公式;(2)设Sn|a1|a2|an|,求Sn.解(1)an22an1an0,所以an2an1an1an,所以an1an为常数列,所以an是以a1为首项的等差数列,设ana1(n1)d,a4a13d,所以d2,所以an102n.(2)因为an102n,令an0,得n5.当n5时,an0;当n5时,an0;当n5时,an0.所以当n5时,Sn|a1|a2|an|a1a2a5(a6a7an)T5(TnT5)2T5Tnn29n40,Tna1a2an,当n5时,Sn|a1|a2|an|a1a2anTn9nn2.所以Sn10.已知函数g(x)(aR),f(x)ln(x1)g(x).(1)若函数g(x)过点(1,1),求函数f(x)的图象在x0处的切线方程;(2)判断函数f(x)的单调性.解(1)因为函数g(x)过点(1,1),所以1,解得a2,所以f(x)ln(x1).由f(x),则f(0)3,所以所求的切线的斜率为3.又f(0)0,所以切点为(0,0),故所求的切线方程为y3x.(2)因为f(x)ln(x1)(x1),所以f(x).当a0时,因为x1,所以f(x)0,故f(x)在(1,)上单调递增;当a0时,由得1x1a,故f(x)在(1,1a)上单调递减;由得x1a,故f(x)在(1a,)上单调递增.综上,当a0时,函数f(x)在(1,)上单调递增;当a0时,函数f(x)在(1,1a)上单调递减,在(1a,)上单调递增.11.已知椭圆1(ab0)的一个焦点与抛物线y24x的焦点F重合,且椭圆短轴的两个端点与点F构成正三角形.(1)求椭圆的方程;(2)若过点(1,0)的直线l与椭圆交于不同的两点P,Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出E的坐标,并求出这个定值;若不存在,请说明理由.解(1)由题意,知抛物线的焦点为F(,0),所以c.因为椭圆短轴的两个端点与F构成正三角形,所以b1.可求得a2,故椭圆的方程为y21.(2)假设存在满足条件的点E,当直线l的斜率存在时设其斜率为k,则l的方程为yk(x1).由得(4k21)x28k2x4k240,设P(x1,y1),Q(x2,y2),所以x1x2,x1x2.则(mx1,y1),(mx2,y2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论