卡诺图是真值表的变形.doc_第1页
卡诺图是真值表的变形.doc_第2页
卡诺图是真值表的变形.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

卡诺图是真值表的变形,它可以将有n个变量的逻辑函数的2n个最小项组织在给定的方格矩阵中,同时为相邻最小项(相邻与项)运用邻接律化简提供了直观的图形工具。卡诺图是贝尔实验室的电信工程师Maurice Karnaugh在1953年发明的。目录 1 变量卡诺图 2 函数卡诺图 3 用卡诺图化简逻辑函数的步骤 4 引用 变量卡诺图 表示各最小项的2n(n-变量数)个小格,排列呈矩形。 小格按“循环码” 排列,保证最小项间“几何相邻”与“逻辑相邻性”的统一。(几何相邻有“内相邻” “外相邻”和“中心对称”) 函数卡诺图把函数包含的所有最小项,以“1”填入变量卡诺图对应编号的小格内。 99用卡诺图化简逻辑函数的步骤 如果表达式为最小项表达式,则可直接填入卡诺图 如表达式不是最小项表达式,但是“与或表达式”,可将其先化成最小项表达式,再填入卡诺图。也可直接填入。 合并相邻的最小项,即根据下述原则画圈 尽量画大圈,但每个圈内只能含有2n(n=0,1,2,3)个相邻项。要特别注意对边相邻性和四角相邻性。 圈的个数尽量少。 卡诺图中所有取值为1的方格均要被圈过,即不能漏下取值为1的最小项。 在新画的包围圈中至少要含有1个末被圈过的1方格,否则该包围圈是多余的。 写出化简后的表达式。每一个圈写一个最简与项,规则是,取值为l的变量用原变量表示,取值为0的变量用反变量表示,将这些变量相与。然后将所有与项进行逻辑加,即得最简与或表达式。 在进行化简时,如果用图中真值为0的项更方便

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论