SCR脱硝技术方案.doc_第1页
SCR脱硝技术方案.doc_第2页
SCR脱硝技术方案.doc_第3页
SCR脱硝技术方案.doc_第4页
SCR脱硝技术方案.doc_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

*有限公司燃煤锅炉烟气脱硝处理初步方案*环保公司目 录1、项目概况42、脱硝工艺简述42.1 脱硝工艺介绍42.2 选择性催化还原法(SCR)技术介绍42.2.1 SCR工作原理42.2.2 SCR系统组成52.2.3 SCR工艺流程52.3.4 SCR反应过程62.3.5 SCR技术特点62.4 选择性非催化还原法(SNCR)技术介绍62.4.1 SNCR工作原理62.4.2 SNCR系统组成62.4.3 SNCR工艺流程62.4.4 SNCR反应过程72.4.5 SNCR技术特点82.5 SNCR+SCR联合工艺介绍82.5.1 SNCR+SCR联合工艺工作原理82.5.2 SNCR+SCR联合工艺的系统组成92.5.3 SNCR+SCR联合工艺流程92.5.4 SNCR+SCR联合工艺反应过程92.5.5 SNCR+SCR联合工艺特点93、本方案采用的SNCR系统123.1 系统组成123.2 系统简述133.2.1 尿素溶液输送系统133.2.2 喷射器布置133.2.3 炉前喷射设备143.3 其工艺流程简图如下:143.4 SNCR工艺的经济性分析154、后续的SCR工艺165、工艺计算165.1设计基础参数(单台)165.2物料衡计算175.2.1 影响脱硝率的因素175.2.2 设计参数取值175.2.3 计算过程176、SNCRSCR联合工艺脱硝预期效果171、项目概况*公司有两台200t/h燃煤锅炉,已建成除尘脱硫装置,但随着国家对烟气排放标准要求的日益提高,锅炉的脱硝工作也被提到了议事日程,在这个背景下,受该公司委托,我公司特编报此脱硝初步方案,供业主参考。2、脱硝工艺简述2.1 脱硝工艺介绍氮氧化物(NOx)是在燃烧工艺过程中由于氮的氧化而产生的气体,它不仅刺激人的呼吸系统,损害动植物,破坏臭氧层,而且也是引起温室效应、酸雨和光化学反应的主要物质之一 。世界各地对NOx的排放限制要求都趋于严格,而火电厂、垃圾焚烧厂和水泥厂等作为NOx气体排放的最主要来源,其减排更是受到格外的重视。目前全世界降低电厂锅炉NOX排放行之有效的主要方法大致可分为以下四种:(1)低氮燃烧技术,即在燃烧过程中控制氮氧化物的生成,主要适用于大型燃煤锅炉等;低NOX燃烧技术只能降低 NOX 排放值 的3050%,要进一步降低NOX 的排放, 必须采用烟气脱硝技术。(2)选择性催化还原技术(Selective Catalytic Reduction ,SCR),主要用于大型燃煤锅炉,是目前我国烟气脱硝技术中应用最多的;(3)选择性非催化还原技术(SNCR,Selective Non-Catalytic Reduction),主要用于垃圾焚烧厂等中、小型锅炉,技术成熟,但其效率低于SCR法;投资小,建设周期短。(4)选择性催化还原技术(SCR)+选择性非催化还原技术(SNCR),主要用于大型燃煤锅炉低NOx排放和场地受限情况,也比较适合于旧锅炉改造项目。2.2 选择性催化还原法(SCR)技术介绍2.2.1 SCR工作原理选择性催化剂还原法(Selective Catalytic Reduction)简称SCR,指在一定的温度和催化剂的作用下,以液氨或尿素作为还原剂,有选择性地与烟气中的氮氧化物反应并生成无毒无污染的氮气和水。该技术可使用液氨或尿素为脱硝还原剂。SCR脱硝工艺采用催化剂使氮氧化物发生还原反应,反应温度较低(300450)。其方法是,将还原剂喷入装有催化剂的反应器内,烟气通过催化剂与之产生化学反应进行脱硝。此工艺的脱硝效率可达90%以上,是国内外电厂应用最多,技术最成熟的一种烟气脱硝技术2.2.2 SCR系统组成SCR脱硝系统主要由烟气系统、脱硝反应器、还原剂制备系统、电气控制系统等几部分组成。2.2.3 SCR工艺流程1、燃煤锅炉烟气脱硝:锅炉省煤器脱硝反应器空预器除尘脱硫装置引风机烟囱2、工业窑炉烟气脱硝:窑炉余热锅炉前段脱硝反应器余热锅炉后段除尘脱硫装置引风机烟囱脱硝反应器通常设置在锅炉省煤器和空气预热器之间。脱硝反应器入口与锅炉省煤器出口通过烟道连接,出口与空气预热器通过烟道连接,烟气由上至下垂直通过脱硝反应器催化剂层。如下图所示:2.3.4 SCR反应过程1、主反应NO+NO2+2NH32N2+3H2O4NO+4NH3+O24N2+6H2O2NO2+4NH3+O23N2+6H2O2、副反应2SO2+O22SO32.3.5 SCR技术特点SCR的技术指标如下:脱硝效率85%氨逃逸率3ppmSO2/SO3的转换率1%SCR的技术特点:SCR技术具有脱硝率高、氨逃逸低等显著特点,因此目前锅炉烟气脱硝措施中,由于SCR是最为成熟的商业性NOx控制处理技术,国内更多是采用SCR脱硝技术。但该技术也有着明显的缺点,就是投资巨大、运行费用高昂。此外,SCR技术需要的反应温度为300450,在反应温度较高时,催化剂会产生烧结及(或)结晶现象;在反应温度较低时,催化剂的活性会因为硫酸铵在催化剂表面凝结堵塞催化剂的微孔而降低。2.4 选择性非催化还原法(SNCR)技术介绍2.4.1 SNCR工作原理选择性非催化还原(SNCR)脱硝工艺是将含有 NHx 基的还原剂(如氨气、 氨水或者尿素等)喷入炉膛温度为900-1100的区域,还原剂通过安装在屏式过热器区域的喷枪喷入,该还原剂迅速热分解成 NH3和其它副产物,随后 NH3 与烟气中的 NOx 进行 SNCR 反应而生成 N2和H2O。2.4.2 SNCR系统组成SNCR脱硝系统主要由还原剂存储与制备、输送、计量分配、喷射系统和电气控制系统等几部分组成。2.4.3 SNCR工艺流程SNCR的典型工艺流程为:还原剂锅炉/窑炉(反应器)除尘脱硫装置引风机烟囱。还原剂一般以尿素为主,尿素被溶解制备成浓度为50%的尿素溶液,经输送泵送至计量分配模块,与稀释水模块送过来的水混合,尿素溶液被稀释至10%,通过计量分配装置精确分配到每个喷枪,然后经过喷枪喷入炉膛,实现脱硝反应。如下图所示:2.4.4 SNCR反应过程1、NH3 作为还原剂:4NO+4NH3+O24N2+6H2O2NO+4NH3+2O23N2+6H2O6NO2+8NH37N2+12H2O2、尿素作为还原剂:CO(NH2)2+ 2NO 2N2+CO2+2H2OCO(NH2)2+ H2O2NH3+CO24NO+4NH3+O24N2+6H2O2NO+4NH3+2O23N2+6H2O6NO2+8NH37N2+12H2O2.4.5 SNCR技术特点SNCR技术特点:1、脱硝效率可达3040%2、氨逃逸较高812ppm3、系统简单,投资省4、无催化剂,运行费用省5、占地面积小SNCR技术投资成本低,建设周期短,脱硝效率中等,比较适用于缺少资金的发展中国家和适用于对现有中小型锅炉的改造。这种技术的不足之处就是 NOx的脱除效率不高,氨逃逸比较高。所以单独使用 SNCR技术受到了一些限制。但对于中小型机组或老机组改造,由于它在经济性能方面的优势,仍不失其吸引力。SNCR法不使用催化剂,采用炉膛喷射脱硝,氨还原NO在900-1100这一狭窄温度范围内进行。喷入的氨与烟气良好混合是保证脱硝还原反应充分进行、使用最少量氨达到最好效果的重要条件。若喷入的氨未充分反应,则泄漏的氨会影响锅炉炉尾部受热面,不仅使烟气飞灰容易沉积在受热面,且烟气中氨遇到三氧化硫会生成硫酸氨,易堵塞空气预热器,并有腐蚀危险。目前,国外对 SNCR的研究除了进一步提高其效率和安全性之外,另一个重点是对 SNCR和其它脱硝技术的联合应用的研究。2.5 SNCR+SCR联合工艺介绍2.5.1 SNCR+SCR联合工艺工作原理联合SNCR - SCR烟气脱硝技术不是选择性催化还原法(以下简称SCR)工艺与选择性非催化还原法(以下简称SNCR)工艺的简单组合,它是结合了SCR技术高效、SNCR技术投资省的特点而发展起来的一种新型工艺。该工艺将SNCR工艺的还原剂喷入炉膛技术与SCR工艺利用逃逸氨进行催化反应结合起来,进一步脱除NOx。混合脱硝工艺以尿素作为吸收剂,是炉内一种特殊的SNCR工艺与一种简洁的后端SCR脱硝反应器有效结合,充分发挥了SNCR工艺投资省、SCR工艺脱硝效率高的优势。2.5.2 SNCR+SCR联合工艺的系统组成脱硝系统主要由还原剂存储与制备、输送、计量分配、喷射系统、烟气系统、脱硝反应器、电气控制系统等几部分组成。2.5.3 SNCR+SCR联合工艺流程烟气锅炉/窑炉还原剂SCR反应器除尘脱硫塔引风机烟囱排放SNCR反应器混合SNCR - SCR 工艺具有2 个反应区,还原剂一般以尿素为主,尿素被溶解制备成浓度为50%的尿素溶液,经输送泵送至计量分配模块,与稀释水模块送过来的水混合,尿素溶液被稀释至10%,通过计量分配装置精确分配到每个喷枪,然后经过喷枪喷入第1个反应区炉膛,在高温下,还原剂与烟气中NOx 在没有催化参与的情况下发生还原反应,实现初步脱氮。过量逃逸的氨随烟气进入第2个反应区炉后的脱硝反应器,在催化剂作用下,氨与氮氧化物发生化学反应,实现进一步的脱硝,同时也将氨逃逸率降到可接受的范围。混合SNCR - SCR工艺最主要的改进就是省去了SCR工艺设置在烟道里的复杂的氨喷射格栅(Ammonia Injection Grid,简称A IG)系统,并大幅度减少了催化剂的用量。2.5.4 SNCR+SCR联合工艺反应过程CO(NH2)2+ 2NO 2N2+CO2+2H2OCO(NH2)2+ H2O2NH3+CO2NO+NO2+2NH32N2+3H2O4NO+4NH3+O24N2+6H2O2NO2+4NH3+O23N2+6H2O2.5.5 SNCR+SCR联合工艺特点脱硝效率高单一的SNCR工艺脱硝效率低(一般在40%以下) ,而混合SNCR - SCR工艺可获得与SCR工艺一样高的脱硝率(80%以上) 。催化剂用量小SCR工艺由于脱硝催化剂的使用,大大降低了反应温度并提高了脱硝效率,但是,由于催化剂非常昂贵,一般占整个SCR工艺总投资的1 /3左右,并且由于需要定期更换,运行费用也很高。混合法工艺由于首先采用了SNCR工艺初步脱硝,降低了对催化剂的依赖。与SCR 工艺相比,混合工艺的催化剂用量可以大大减少。混合脱硝工艺中,当SNCR阶段脱硝效率为55% ,而要求总脱硝效率为75%时,混合法工艺与SCR工艺相比可节省50%的催化剂;当要求总脱硝效率为65%时, SCR阶段催化剂的用量可以节省70%。SCR反应塔体积小,空间适应性强由于混合法工艺催化剂用量少,通过对锅炉烟道、扩展烟道、省煤器或空气预热器等进行改造来布置SCR反应器,大大缩短了反应器上游烟道长度。它与单一的SCR工艺相比,不需复杂的钢结构,节省了投资且不受场地的限制。脱硝系统阻力小由于混合法工艺的催化剂用量少, SCR反应器体积小,其前部烟道较短,因此,与传统SCR工艺相比,系统压降将大大减小,减少了引风机改造的工作量,降低了运行费用。减少SO2 向SO3 的转化,降低腐蚀危害催化剂的使用虽然有助于提高脱硝效率,但也存在增强SO2 向SO3 转化的副作用,而烟气中SO3含量的增加,将生成更多的NH4HSO4。 NH4HSO4 的黏结性很强,在烟气温度较低时,会堵塞催化剂并对下游设备造成腐蚀。混合法由于减少了催化剂的用量,将使这一问题得到一定程度的遏制。省去SCR旁路的建造机组频繁启、停且长期低负荷运行或超负荷运行时,都可能由于排烟温度的不适宜而缩短催化剂的寿命。为此, SCR工艺一般需要设置旁路系统,以避免烟温过高或过低对催化剂造成的损害。而旁路的设置又增加了初期投资,并对系统控制和场地面积等也提出了更高的要求。混合SNCR - SCR工艺由于催化剂用量大大减少,因此,可以不再设置旁路系统,从而降低了控制系统的复杂程度和对场地的要求,减少了初期投资,简化了控制。催化剂的回收处理量减少脱硝系统目前所用催化剂寿命一般为23年。催化剂所用材料中的V2O5 有剧毒,大量废弃的催化剂会造成二次污染,必须进行无害化处理。混合法工艺催化剂用量小,可大大减少废弃催化剂的处理量。简化还原剂喷射系统为了获得高效脱硝反应,要求喷入的氨与烟气中的NOx有良好的接触并要求在催化反应器前形成分布均匀的流场、浓度场和温度场,为此,单一的SCR工艺除必须设置复杂的氨喷射格栅(A IG)及其控制系统外,还往往需要在多处安放掺混设施、加长烟道以保证A IG与催化剂之间有足够远的距离等措施,以达到上述要求。而混合工艺的还原剂喷射系统布置在锅炉炉墙上,与下游的SCR反应器距离很远,因此,无需再加装混合设施,也无需加长烟道,就可以在催化剂反应器入口获得良好还原剂与NOX的混合及分布。加大了炉膛内还原剂的喷入区间, 提高了SNCR阶段的脱硝效率单纯的SNCR 工艺为了满足对氨逃逸量的限制,要求该工艺还原剂的喷入点必须严格选择在适宜反应的温度区域内。而在混合SNCR - SCR技术中, SNCR过程中形成的氨泄漏是作为SCR反应的还原剂来设计的,因此,对SNCR阶段氨逃逸的问题的考虑可以大大放宽。相对于独立的SNCR工艺,混合工艺氨喷射系统可布置在适宜的反应温度区域稍前的位置, 从而延长还原剂的停留时间。在SNCR过程中未完全反应的氨将在位于下游的SCR反应器被进一步利用。混合工艺的这种安排,有助于提高SNCR阶段的脱硝效率。目前,混合工艺的SNCR阶段的脱硝效率已经可以达到55%以上。可以方便地使用尿素作为脱硝还原剂由于液氨在运输和使用过程中存在诸多不安全因素,更多的SCR 开始寻求其他安全的替代还原剂。尿素制氨系统成为SCR工艺一个主要的发展方向,如北京高碑店电厂以及石景山电厂都采用尿素热解制氨系统,然而由于该系统需要复杂和庞大的尿素热解装置,投资费用大。而混合法工艺通过直接将尿素溶液喷入炉膛,直接利用锅炉的高温,将尿素溶液分解为氨,从而省去了热解装置,既方便又安全。SCR催化剂吹灰需布置多层吹灰器,占地面积较大。SNCRSCR吹灰器最多布置一层占地面积较小。2.6 本方案选择的脱硝工艺*公司2200t/h锅炉系统设计中没有考虑脱硝,造成场地受限,如果完全采用SCR法,由于前期没有考虑脱硝措施,锅炉省煤器和空预器之间不可能有足够的空间安装催化剂,一旦催化剂的安装空间受到场地条件的限制,则实施的难度将非常大,并且改造锅炉风烟系统的工程量会非常大,同时也会造成整个系统的阻力等问题,有可能造成引风机压头不够等情况。为此,本方案考虑采用实施比较简单可行SNCR法,先进行炉内脱硝处理。再考虑在锅炉风烟系统空间允许的条件下,在省煤器和空预器之间增加SCR脱硝部分(或在空预器后利用低温催化剂增加SCR脱硝部分,低温催化剂为贵金属催化剂价格高),形成SNCR+SCR的混合型烟气脱硝技术,即利用原有炉内 SNCR 系统的还原剂制备、稀释、喷射、控制系统的基础上,加装烟气尾部脱硝装置(SCR),组成 SNCR/SCR 联合脱硝工艺。3、本方案采用的SNCR系统3.1 系统组成本方案采用典型的SNCR脱硝工艺,其系统主要由尿素仓储系统、尿素溶液制备与储存系统、尿素溶液计量分配及喷射系统和电气控制系统等几部分组成。具体分为以下几个单元:1)还原剂和软化水储存及配送单元还原剂储罐还原剂泵送单元稀释水泵送单元2)还原剂和软化水混合及配送单元包括混合模块和喷射模块的工艺单元盘柜3)喷射系统喷射器 4)工艺控制和调整单元控制和调整单元如下图所示:3.2 系统简述SNCR 脱硝技术是一种较为成熟的商业性 NOx控制处理技术。SNCR 脱硝方法主要是将含氮的药剂在8701200 温度区域喷入含 NOx 的燃烧产物中, 发生还原反应, 脱除 NO , 生成氮气和水。SNCR 脱硝在实验室试验中可达到 90%以上的 NOx脱除率。在大型锅炉应用上, 短期示范期间能达到75%的脱硝效率, 典型的长期现场应用能达到30%50%的 NOx 脱除率。SNCR 脱硝技术是 20世纪 70 年代中期在日本的一些燃油、燃气电厂开始应用的, 80 年代末欧盟国家一些燃煤电厂也开始了SNCR 脱硝技术的工业应用, 美国 90 年代初开始应用 SNCR 脱硝技术, 目前世界上燃煤电厂SNCR 脱硝工艺的总装机容量在 2 GW 以上。本工程SNCR 脱硝系统选用的脱硝剂是尿素。固体尿素经加水溶解为尿素溶液, 再用输送泵送至炉前喷枪。3.2.1 尿素溶液输送系统尿素溶液储罐里的尿素溶液由供液泵输送, 供液泵出口处设有稀释水路, 根据运行要求将尿素溶液稀释, 稀释后的尿素溶液再经不锈钢伴热管送至炉前喷射器(以下简称喷枪) , 通过不锈钢软管与喷枪连接。3.2.2 喷射器布置锅炉共布置 42 只喷枪, 分 3 层布置在炉膛燃烧区域上部和炉膛出口处。前墙和侧墙喷枪分别布置在 28.5m、26 m、23.5 m 标高处, 后墙喷枪布置在 27.3 m、25.4 m 和 23.5 m 标高处。锅炉高负荷运行时, 投运上两层喷枪, 低负荷运行时, 投运下两层喷枪。在 SNCR 脱硝系统投运时, 一般投运一层或两层喷枪即可, 其余停运喷枪由控制系统控制退出炉膛, 以避免喷枪受热损坏。3.2.3 炉前喷射设备喷枪(含喷嘴) 采用不锈钢制造, 包括喷枪本体、喷嘴座、雾化头、喷嘴罩等四部分。喷枪本体上的尿素溶液进口和雾化蒸汽进口为螺纹连接, 通过两根金属软管分别与尿素溶液管路、蒸汽管路连接。软管后面的尿素溶液管路、蒸汽管路上就近各布置一个球阀。每只喷枪都配有电动推进器, 实现自动推进和推出喷枪的动作。推进器的位置信号接到 SNCR脱硝控制系统上, 与开(停)雾化蒸汽和开(停)尿素溶液的阀门动作联动, 实现整个 SNCR 脱硝系统喷枪自动运行。3.3 其工艺流程简图如下:3.4 SNCR工艺的经济性分析SNCR工艺以锅炉炉膛为反应器,可通过对锅炉外围的改造来实现对烟气的脱硝,工程建设周期短,其投资成本和运行成本与其它脱硝技术相比都是比较低的,因此非常适合对现有锅炉进行改造,特别适合于中小型锅炉的脱硝改造。如果再辅以炉后尾部烟气SCR脱硝技术联合使用,将是非常好的选择。一方面在较低投资条件下有效提高了脱硝的效率,另一方面,也很好的控制了氨逃逸。国外SNCR脱硝系统的运行情况如下表所示:国外电厂已经行的SNCR脱硝技术经济指标锅炉功率/MW未脱硝前NOx含量/(10-6)NOx脱除率/(%)单位投资/(美元/kw)均化成本/(mills/(kwh)成本/(美元/吨NOx脱除)氨逃逸量/(10-6)10066050182.03114030066050101.659285006605081.57881200300302218065200300502216482014078031151033103209603710.677351103704715161.11.3770979104、后续的SCR工艺SNCRSCR联合脱硝工艺的核心为SNCR部分,SCR脱硝反应器只是辅助设备。在SNCR反应器内NOx已经被脱除了40%左右,并且由于较高的氨逃逸,到达SCR反应器的还剂还有相当的含量,因此在SCR反应器内不再喷射还原剂,因而不用再安装复杂的氨喷射格栅,而是在催化剂的作用利用残余的还原剂脱除烟气中的NOx。这样一来可以将烟气中最终氨逃逸控制在很小的范围内。另外,复合工艺中SCR反应器所需催化剂的数量也比常规SCR反应器大为减少,只需后者的一半至三分之一左右即可满足工艺要求,一般催化剂层只需布置一层即可。并且蒸汽吹灰系统也被简化为一层。在保证将NOx的脱除率提高到80%左右的前提下,还降低了运行费用和工程投资。自SCR反应器出来的烟气再进入后续的除尘、脱硫系统继续处理,最后由引风机排入烟囱。SNCRSCR联合脱硝工艺流程图如下:5、工艺计算5.1设计基础参数(单台)烟气量:24.0万m3/h(折算为标况为15.0万Nm3/h)NOX含量:小于550mg/Nm35.2物料衡计算5.2.1 影响脱硝率的因素影响脱硝效率的主要因素有:温度、摩尔比、反应时间,如果控制好脱硝剂的喷入位置,即可控制好反应温度和反应时间。NH3/ NOx摩尔比对 NOx还原率的影响很大,尽管从化学反应式来看,反应摩尔比为1,但是实际上都要比 1大才能达到较理想的 NOx还原率,NOx摩尔比过大虽然有利于 NOx还原率增大,但是氨的逃逸加大又会造成新的问题,同时还增加了运行费用。5.2.2 设计参数取值已有的运行经验显示,NH3/ NOx摩尔比一般1.12,超过2以后增加氨的喷入量对脱硝的效率影响已经很小。为此,本设计取NH3/ NOx摩尔比为1.5进行设计计算。固体尿素纯度按80%计。最佳温度区间为9001150,在此区间内的停留时间设计为0.5s以上。计算按全部生成NO计。5.2.3 计算过程 设计燃烧产生NOx值为550mg/Nm3,设计排放值按200mg/Nm3计,锅炉炉出口最大烟气排放量为150000Nm3/h。生成NO量:150000Nm3/h350 mg/Nm3=52500000 mg/h=52.5kg/h化学反应式:2NO+CO(NH2)2+1/2O2 2N2+CO2+2H2O每小时消耗80%纯度固体尿素的量为:52.568601.580%=111.56kg每小时消耗水量为:111.5610%-111.56=1004.04kg6、SNCRSCR联合工艺脱硝预期效果本系统采用炉内脱硝SNCR和烟气尾部脱硝SCR工艺混合型技术,将体现以下优点:1、远远小于传统SCR系统成本即可达到85%的脱硝效率;2、改造工期短、改造工程量小;3、对锅炉系统影响小,不需对锅炉、烟风道、引风机等进行改造;4、减少SCR催化剂的使用量从而减少SO2到SO3的转换; 5、SO2/SO3转化所引起的腐蚀和空预器阻塞问题小; 6、较SCR反应器小,具有更好的空间适用性 ;7、脱硝系统阻力低,催化剂用量少,运行费用低;8、无需尿素热解系统,简化了工艺,节省了投资;9、安装灵活,可先安装SNCR,满足现行的脱硝要求,SCR部分可留待以后环保要求提高时再安装,脱硝工程分步实施,降低初始投资。SCR烟气脱硝技改项目技 术 方 案目 录1总则12工程概况12.1锅炉主要参数12.2脱硝工艺方案22.3工程范围23设计采用的标准和规范24烟气脱硝工艺方案34.1 脱硝工艺的简介35 工艺系统说明95.1 氨的储存系统95.5 电气部分185.6仪表和控制系统196供货范围及清单216.1供货范围(不仅限于此)216.2供货清单227施工工期258施工组织设计268.1施工前期准备工作268.2施工方案269质量保证及售后服务3310设计技术指标34技术方案1总则1.1本技术文件仅适用于烟气脱硝技改项目,它包括脱硝系统正常运行所必需具备的工艺系统、控制系统的设计、设备选型、采购、制造、运输、设备供货、脱硝系统的安装施工及全过程的技术指导、调试、试运行、人员培训和最终的交付投产。土建设计及施工由招标方负责,由投标方提出土建条件资料。1.2本技术文件提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范条文,投标方保证提供符合国家或国际标准和本技术规范书要求的优质产品及其相应的服务,对国家有关安全、环保、劳卫、消防等强制性标准将满足其要求,同时确保达到招标技术条件书要求的指标值。当投标方执行招标技术条件书所列标准(所列标准如有更新版本,以最新版本为准)有矛盾时,按较高标准执行。1.3技术合同谈判将以本技术文件书为蓝本,经修改后最终确定的文件将作为技术协议书,并与商务合同文件有相同的法律效力。双方工作语言为中文,所有的技术条件书、文件资料均为中文。1.4本技术文件未尽事宜,双方协商解决。2工程概况2.1锅炉主要参数锅炉形式:煤粉炉额定蒸发量: 2220t/h省煤器出口烟气温度:380烟气中NOX含量: 1000mg/ Nm32.2脱硝工艺方案锅炉脱硝装置分别采用选择性催化还原法(SCR)工艺做脱硝设计方案。性能保证要求:当装置进口烟气中NOX的含量不大于1000mg/Nm3时,保证脱硝装置出口烟气中NOX含量不大于200mg/Nm3。2.3工程范围2.3.1本工程为设计、供货、安装、培训、调试及交付使用等为一体的总承包项目。招标方提供电源、气源、水源、热源至脱硝区域10米范围内。2.3.2投标方提供详细的供货清单,但不局限于供货范围内所列设备和系统。对于属于整套设备运行和施工所必需的部件,即使本文条款中未列出或数量不足,投标方仍须在执行合同时补足。2.3.3 投标方提供检修所需的专用工具、随机备品备件。3设计采用的标准和规范3.1脱硝装置的设计、制造、安装、调试、试验及检查、试运行、考核、最终交付等符合相关的中国法律及规范。对于标准的采用符合下述原则:(1)与安全、环保、健康、消防等相关的事项执行中国国家及地方有关法规、标准;(2)设备和材料执行设备和材料制造商所在国标准;(3)建筑、结构执行中国电力行业标准或中国相应的行业标准。3.2脱硝工程设计、制造、安装、调试、试验及检查、试运行、性能考核、最终交付中采用的所有标准、规定如下:GB5005495低压配电设计规范GB5003492工业企业照明设计标准GB132232003火电厂大气污染物排放标准GB1234890工业企业厂界噪声标准GB162971996大气污染物综合排放标准HJ/T75-2001火电厂烟气排放连续监测统技术规范GB4272-92设备及管道保温技术通则GB5022195钢结构工程质量检验评定标准GB50205-2001钢结构工程施工质量验收规范GB50212-91建筑防腐蚀工程施工及验收规范HGJ22991工业设备、管道防腐蚀工程施工及验收规范GB019897热工仪表及控制装置施工及验收规范GB5016892电气装置安装工程电缆线路施工及验收规范GB5016992电气装置安装工程接地装置施工及验收规范GB5025996电气装置安装工程电气照明施工及验收规范GB50231-98机械设备安装工程施工及验收通用规范GB50235-97工业金属管道工程施工及验收规范GB50236-1998现场设备工业管道焊接工程施工及验收规范GB50275-98压缩机、风机、泵安装工程施工及验收规范HGJ20983钢结构、管道涂装技术规程JGJ8l91建筑钢结构焊接规程DLGJ158-2001火力发电厂钢制平台扶梯设计技术规定4烟气脱硝工艺方案4.1 脱硝工艺的简介有关NOX的控制方法从燃料的生命周期的三个阶段入手,限燃烧前、燃烧中和燃烧后。当前,燃烧前脱硝的研究很少,几乎所有的形容都集中在燃烧中和燃烧后的NOX的控制。所以在国际上把燃烧中NOX的所有控制措施统称为一次措施,把燃烧后的NOX控制措施统称为二次措施,又称为烟气脱硝技术。目前普遍采用的燃烧中NOX控制技术即为低NOX燃烧技术,主要有低NOX燃烧器、空气分级燃烧和燃料分级燃烧。应用在燃煤电站锅炉上的成熟烟气脱硝技术主要有选择性催化还原技术(Selective Catalytic Reduction,简称SCR)、选择性非催化还原技术(Selective Non-Catalytic Reduction,简称SNCR)以及SNCR/SCR混合烟气脱硝技术。4.2 SCR烟气脱硝技术近几年来选择性催化还原烟气脱硝技术(SCR)发展较快,在欧洲和日本得到了广泛的应用,目前催化还原烟气脱硝技术是应用最多的技术。1)SCR脱硝反应目前世界上流行的SCR工艺主要分为氨法SCR和尿素法SCR两种。此两种法都是利用氨对NOX的还原功能,在催化剂的作用下将NOX(主要是NO)还原为对大气没有多少影响的N2和水。还原剂为NH3,其不同点则是在尿素法SCR中,先利用一种设备将尿素转化为氨之后输送至SCR触媒反应器,它转换的方法为将尿素注入一分解室中,此分解室提供尿素分解所需之混合时间,驻留时间及温度,由此室分解出来之氨基产物即成为SCR的还原剂通过触媒实施化学反应后生成氨及水。尿素分解室中分解成氨的方法有热解法和水解法,主要化学反应方程式为: NH2CONH2+H2O2NH3+CO2在整个工艺的设计中,通常是先使氨蒸发,然后和稀释空气或烟气混合,最后通过分配格栅喷入SCR反应器上游的烟气中。典型的SCR反应原理示意图如下:在SCR反应器内,NO通过以下反应被还原: 4NO+4NH3+O23N2+6H2O 6NO+4NH35N2+6H2O当烟气中有氧气时,反应第一式优先进行,因此,氨消耗量与NO还原量有一对一的关系。在锅炉的烟气中,NO2一般约占总的NOX浓度的5%,NO2参与的反应如下: 2NO2+4NH3+O23N2+6H2O 6NO2+8NH37N2+12H2O上面两个反应表明还原NO2比还原NO需要更多的氨。在绝大多数锅炉烟气中,NO2仅占NOX总量的一小部分,因此NO2的影响并不显著。SCR系统NOX脱除效率通常很高,喷入到烟气中的氨几乎完全和NOX反应。有一小部分氨不反应而是作为氨逃逸离开了反应器。一般来说,对于新的催化剂,氨逃逸量很低。但是,随着催化剂失活或者表面被飞灰覆盖或堵塞,氨逃逸量就会增加,为了维持需要的NOX脱除率,就必须增加反应器中NH3/NOX摩尔比。当不能保证预先设定的脱硝效率和(或)氨逃逸量的性能标准时,就必须在反应器内添加或更换新的催化剂以恢复催化剂的活性和反应器性能。从新催化剂开始使用到被更换这段时间称为催化剂寿命。2)SCR系统组成及反应器布置在选择催化还原工艺中,NOx与NH3在催化剂的作用下产生还原。催化剂安放在一个固定的反应器内,烟气穿过反应器平行流经催化剂表面。催化剂单元通常垂直布置,烟气自上向下流动。如下图所示:SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。下图为典型SCR烟气脱硝工艺系统基本流程简图:4.3 SNCR烟气脱硝技术选择性催化还原脱除NOX的运行成本主要受催化剂寿命的影响,一种不需要催化剂的选择性还原过程或许更加诱人,这就是选择性非催化还原技术。该技术是用NH3、尿素等还原剂喷入炉内与NOX进行选择性反应,不用催化剂,因此必须在高温区加入还原剂。还原剂喷入炉膛温度为8501100的区域,该还原剂(尿素)迅速热分解成NH3并与烟气中的NOX进行SNCR反应生成N2,该方法是以炉膛为反应器。研究发现,在炉膛8501100这一狭窄的温度范围内、在无催化剂作用下,NH3或尿素等氨基还原剂可选择性地还原烟气中的NOX,基本上不与烟气中的O2作用,据此发展了SNCR法。在8501100范围内,NH3或尿素还原NOX的主要反应为:NH3为还原剂 4NH3+4NO+O24N2+6H2O尿素为还原剂NO+CO(NH2)2 +1/2O22N2+CO2+H2O当温度高于1100时, NH3则会被氧化为4NH3+5O24NO+6H2O不同还原剂有不同的反应温度范围,此温度范围称为温度窗。NH3的反应最佳温度区为 850110O。当反应温度过高时,由于氨的分解会使NOx还原率降低,另一方面,反应温度过低时,氨的逃逸增加,也会使NOx还原率降低。NH3是高挥发性和有毒物质,氨的逃逸会造成新的环境污染。引起SNCR系统氨逃逸的原因有两种,一是由于喷入点烟气温度低影响了氨与NOx的反应;另一种可能是喷入的还原剂过量或还原剂分布不均匀。还原剂喷入系统必须能将还原剂喷入到炉内最有效的部位,因为NOx在炉膛内的分布经常变化,如果喷入控制点太少或喷到炉内某个断面上的氨分布不均匀,则会出现分布较高的氨逃逸量。在较大的燃煤锅炉中,还原剂的均匀分布则更困难,因为较长的喷入距离需要覆盖相当大的炉内截面。为保证脱硝反应能充分地进行,以最少的喷入NH3量达到最好的还原效果,必须设法使喷入的NH3与烟气良好地混合。若喷入的NH3不充分反应,则逃逸的NH3不仅会使烟气中的飞灰容易沉积在锅炉尾部的受热面上,而且烟气中NH3遇到S03会产生(NH4)2S04易造成空气预热器堵塞,并有腐蚀的危险。SNCR烟气脱硝技术的脱硝效率一般为30%-40%,受锅炉结构尺寸影响很大,多用作低NOX燃烧技术的补充处理手段。采用SNCR技术,目前的趋势是用尿素代替氨作为还原剂,值得注意的是,近年的研究表明,用尿素作为还原剂时,NOX会转化为N2O,N2O会破坏大气平流层中的臭氧,除此之外,N2O还被认为会产生温室效应,因此产生N2O问题己引起人们的重视。综上所述,SCR脱硝工艺技术先进,工艺成熟,经济合理,工业业绩居多,脱硝效率高,拟选用目前效率最高的SCR技术。5 工艺系统说明 SCR脱硝系统由三个子系统所组成,SCR反应器及附属系统、氨储存处理系统和氨注入系统。5.1 氨的储存系统(1)系统组成液氨储存系统包括液氨卸料压缩机、液氨储罐等。(2)工艺描述还原剂(氨)用罐车运输并在储罐储存。在高压下,氨被液化以减小运输和储存的体积。市场购买的还原剂(液态氨纯度99.6%),供应商用罐装车运输(以液体形态储存在压力容器内),送往氨贮存场地,通过氨卸载压缩机抽取储罐中气氨,送入储罐后,将槽车中的液氨,挤入液氨储槽中贮存。使用时,储存罐中的氨借助自压输送到蒸发器中。锅炉SCR烟气脱硝系统物料平衡计算,计算结果如下表所示。表5-1 物料平衡计算表参数数值还原剂类型无水氨纯度(%)99.6脱硝效率(%)80氨逃逸(ppm)5催化剂寿命(小时)24000NH3耗量(kg/h)149.6年耗NH3(t/a)1196.8(3)主要设备选型 卸载压缩机卸料压缩机为往复式压缩机,系统设置二台卸载压缩机,一台运行,一台备用。 液氨储槽本工程设置2台液氨储罐,供两炉使用。液氨储罐的最大充装量为25m。储氨罐组可供应两台炉设计条件下,每天运行24小时,连续运行7天的消耗量。液氨储罐上安装有超流阀、逆止阀、紧急关断阀和安全阀做为储罐安全运行保护所用。储罐还装有温度计、压力表液位计和相应的变送器将信号送到主体机组DCS控制系统,当储罐内温度或压力高时报警。储罐四周安装有工业水喷淋管线及喷嘴,当储罐内液氨温度过高时自动淋水装置启动,对储罐进行喷淋降温。5.2氨注入系统(1)系统组成氨注入系统包括氨蒸发器、氨气缓冲罐、氨气稀释槽、废水泵、废水池等。(2)工艺描述储罐里的液态氨靠自压输送到蒸发器,在蒸发器内(通过蒸汽加热)将氨蒸发,每个蒸发槽上装有压力控制阀将氨气压力控制在2kg/cm2。当出口压力超过2kg/cm2时,切断节流阀,停止液氨供应。从蒸发槽蒸发的氨气流进入氨气缓冲罐,通过氨气输送管道送至每一台炉的SCR反应装置旁。再用空气稀释高浓度无水氨,这样氨/空气混合物安全且不易燃。通过装在SCR入口烟道内的氨注入格栅,将氨/空气混合物注入到SCR系统内。(3)主要设备选型 液氨蒸发槽液氨蒸发所需要的热量由低压蒸汽提供,共设有二个液氨蒸发槽(一用一备)。蒸发槽装有安全阀,可防止设备压力异常过高。液氨蒸发槽面积按照在BMCR工况下单台机组100容量设计。加热器功率: 22kW,每台蒸发能力:150kg/h。 氨气缓冲槽氨气缓冲槽的作用即在稳定氨气的供应,避免受蒸发槽操作不稳定所影响。缓冲槽上也有安全阀可保护设备。本工程设有一台氨气缓冲槽,容积:5m,设计压力:0.22MPa。 氨气稀释槽氨气稀释槽为立式水槽,水槽的液位由满溢流管线维持,稀释槽设计连结由槽顶淋水和糟侧进水。液氨系统各排放处所排出的氨气由管线汇集后从稀释槽低部进入。通过分散管将氨气分散入稀释槽水中,利用大量水来吸收安全阀排放的氨。本工程设有一台氨气稀释槽,尺寸:容积:4m,设计压力:常压。 稀释风机喷入锅炉烟道的氨气为空气稀释后的含5左右氨气的混合气体。所选择的风机满足脱除烟气中NOx最大值的要求,并留有一定的余量。稀释风机两台按一台100容量(一用一备)设置,共有四台离心式稀释风机。每台风机的风量:3500m/h,风压:5000Pa。氨/空气混合器为了实现氨和稀释空气的充分、均匀的混合,本工程共设置两台氨/空气混合器,尺寸:DN400,设计压力:0.3MPa。 氨气泄漏检测器液氨储存及注入系统周边设有3只氨气检测器,以检测氨气的泄漏,并显示大气中氨的浓度。当检测器测得大气中氨浓度过高时,在机组控制室会发出警报,操作人员采取必要的措施,以防止氨气泄漏的异常情况发生。电厂液氨储存及供应注入系统远离机组,并采取措施与周围环境隔离。 排污系统液氨储存和注入系统的氨排放管路为一个封闭系统,将经由氨气稀释槽吸收成氨废水后排放至废水池再经由废水泵送至主厂废水处理站。废水泵流量:15m/h,扬程25m。 氮气吹扫液氨储存及注入系统保持系统的严密性防止氨气的泄漏和氨气与空气的混合造成爆炸是最关键的安全问题。基于此方面的考虑,本系统的卸料压缩机、液氨储罐、氨蒸发器、氨气缓冲罐等都备有氮气吹扫管线。在液氨卸料之前通过氮气吹扫管线对以上设备分别要进行严格的系统严密性检查和氮气吹扫,防止氨气泄漏和与系统中残余的空气混合造成危险。5.3 SCR反应器及附属系统(1)系统组成SCR反应器和附属系统由挡板门、氨注入格栅、SCR反应器、催化剂、吹灰系统和烟道等组成。(2)工艺描述由氨/空气混合器来的稀释氨气通过氨注入格栅的多个喷嘴,将氨喷入烟气中。注入格栅后的烟气混合装置促进烟气和氨的混合,保证烟气中氨浓度的均匀分布。来自锅炉省煤器出口的烟气通过SCR反应器,SCR反应器包含催化剂层,在催化剂作用下,NH3与NOX反应从而脱除NOX,催化剂促进氨和NOX的反应。在SCR反应器最上面有整流栅格,使流动烟气分布均匀。催化剂装在模块组件中,便于搬运、安装和更换。烟气经过烟气脱硝过程后经空气预热器热回收后进入静电除尘器和FGD系统后排入大气。SCR反应器催化剂层间安装吹灰器用来吹除沉积在催化剂上的灰尘和SCR反应副产物,以减少反应器压力降。SCR工艺主要性能指标有:脱硝效率、氨量、反应器的压力降等。SCR工艺主要设计参数有催化剂总量、催化剂高度、催化剂空隙率和烟气速度等。燃煤锅炉SCR烟气脱硝装置催化剂设计参数见下表。 燃煤锅炉SCR烟气脱硝装置催化剂设计参数项目蜂窝型催化剂板型催化剂本工程采用蜂窝催化剂高灰煤低灰煤单块催化剂孔数400441529400间距(mm)7.47.06.46.97.45比表面积(/ m3)427470500285451空隙率(%)6971678278压力降(kpa/m)0.20.210.270.10.2(3)主要设备选型 SCR反应器反应器的水平段安装有烟气导流、优化分布的装置以及氨的喷射格栅,在反应器的竖直段装有催化剂床。反应器采用固定床垂直通道型式,初装2层,并预留1层位置,作为未来脱硝效率低于保证值时增装催化剂用,以此作为增强脱硝效率并延长有效触媒寿命的备用措施。脱硝效率按80%设计,催化剂模块尺寸为长1901mm宽952mm高1100mm(含框架),锅炉脱硝反应器每层布置21个模块(37),层之间空间高度为3.4m,其中每层催化剂前端有耐磨层,减弱飞灰对催化剂的冲刷作用。每个反应器按3层设计,运行初期仅装2层。每台炉设置一个反应器。反应器为直立式焊接钢结构容器,内部设有触媒支撑结构,能承受内部压力,地震负荷、烟尘负荷、触媒负荷和热应力等。反应器壳外部设有加固肋及保温层。触媒通过反应器外的触媒填装系统从侧门放入反应器内。 喷氨格栅为了使氨在烟气中均匀分布,并且便于对反应器中第一层催化剂上方烟气的NH3/NOx摩尔比的调整,所以需在进口烟道上的合适位置设置喷氨格栅。包括供应箱、喷射格栅和喷射孔等。喷射系统配有节流阀及节流孔板。在对NOx浓度进行连续分析的同时,调节必要的氨量从喷氨格栅中喷氨。5.4 脱硝装置总体布置本烟气脱硝工程主要构筑物有脱硝装置、液态氨的贮存和供应系统的构筑物。在制定脱硝装置布置方案时,应考虑下面设备: SCR反应器; 烟气管道; 与锅炉省煤器和空气预热器的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论