




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Bibliography(参考文献)Chapter1: Overview of Wireless Communication Systems 1 V.H. McDonald, “The Cellular Concept,” Bell System Tech. J, pp. 15-49, Jan. 1979.2 S. Schiesel. Paging allies focus strategy on the Internet. New York Times, April 19, 1999.3 F. Abrishamkar and Z. Siveski, “PCS global mobile satellites,” IEEE Commun. Mag., pp. 132-136, Sep. 1996.4 R. Ananasso and F. D. Priscoli, “The role of satellites in personal communication services,” Issue on Mobile Satellite Communications for Seamless PCS, IEEE J. Sel. Areas Commun., pp. 180-196, Feb. 1995.5 A. J. Goldsmith and S. B. Wicker, “Design challenges for energy-constrained ad hoc wireless networks,” IEEE Wireless Communications Magazine, Aug. 2002.6 T. S. Rappaport. Wireless Communications: Principles and Practice, 2nd ed. Prentice Hall, 2002.7 A. J. Goldsmith and L.J. Greenstein. A measurement-based model for predicting coverage areas of urban microcells. IEEE Journal on Selected Areas in Communication, pages 10131023, September 1993.8 D. D. Falconer, F. Adachi, B. Gudmundson, “Time division multiple access methods for wireless personal communications,” IEEE Commun. Mag., pp.50-57, Jan. 1995.9 A. J. Viterbi, CDMA Principles of Spread Spectrum Communications, Addison-Wesley, 1995.10 K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver, Jr., and C. E. Wheatley III, “On the capacity of a cellular CDMA system,” IEEE Trans. Veh. Tech., pp. 303312, May 1991.11 K. Rath and J. Uddenfeldt, “Capacity of digital cellular TDMA systems,” IEEE Trans. Veh. Tech., pp. 323-332, May 1991.12 Q. Hardy, “Are claims hope or hype?,” Wall Street Journal, p. A1, Sep. 6, 1996.13 A. Mehrotra, Cellular Radio: Analog and Digital Systems, Artech House, 1994.14 J. E. Padgett, C. G. Gunther, and T. Hattori, “Overview of wireless personal communications,” Special Issue on Wireless Personal Communications, IEEE Commun. Mag., pp. 2841, Jan. 1995.15 J. D. Vriendt, P. Laine, C. Lerouge, X. Xu, “Mobile network evolution: a revolution on the move,” IEEE Commun. Mag., pp. 104-111, April 2002.16 P. Bender, P. Black, M. Grob, R. Padovani, N. Sundhushayana, A. Viterbi, “CDMA/HDR: A bandwidth efficient high speed wireless data service for nomadic users,” IEEE Commun. Mag.,July 2000.17 IEEE Personal Communications Magazine: Special Issue on Wireless ATM, August 1996.18 K. Pahlavan and A. H. Levesque. Wireless Information Networks. New York, NY: John Wiley & Sons, Inc., 1995.19 IEEE Pers. Commun. Mag: Special Issue on Smart Antennas, February 1998.20 S. Verdu. Multiuser Detection. Cambridge, U.K.: Cambridge University Press, 1998.21 I. Katzela and M. Naghshineh. Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey. IEEE Pers. Commun. Mag., pages 1022, June 1996.22 G. Pottie. System design choices in personal communications. IEEE Pers. Commun. Mag., pages 5067, October 1995.23 P. Bhagwat, C. Perkins, and S. Tripathi, “Network layer mobility: an architecture and survey,” IEEE Pers. Commun. Mag., pp. 54-64, June 1996.24 A. Nakajima, “Intelligent network architecture for mobile multimedia communication,” IEICE Trans. Commun., pp. 1073-1082, Sep. 1994.25 D. Raychaudhuri, “Wireless ATM networks: architecture, system design and prototyping,” IEEE Pers. Commun. Mag., pp. 42-49, August 1996.26 E. Ayanoglu, K. Y. Eng, and M. J. Karol, “Wireless ATM: limits, challenges, and proposals,” IEEE Pers. Commun. Mag., pp. 18-34, Aug. 1996.27 D. C. Cox, “Wireless personal communications: what is it?,” IEEE Pers. Commun. Mag., pp. 20-35, April 1995.28 R. Kohno, R. Meidan, and L. B. Milstein, “Spread spectrum access methods for wireless communications,” IEEE Commun. Mag., pp. 5867, Jan. 1995.Chapter 2: Path Loss and Shadowing 1 T.S. Rappaport, Wireless Communications - Principles and Practice, 2nd Edition, Prentice Hall, 2001.2 W.C. Jakes, Jr., Microwave Mobile Communications. New York: Wiley, 1974. Reprinted by IEEE Press.3 D. Parsons, The Mobile Radio Propagation Channel. New York: Halsted Press (Division of Wiley). 1992.4 M. Patzold, Mobile Fading Channels. New York: Wiley. 2002.5 G. Stuber, Principles of Mobile Communications, 2nd Ed., Boston: Kluwer Academic Press.6 J.W. McKown and R.L. Hamilton, Jr., “Ray tracing as a design tool for radio networks,” IEEE Network , Vol. 5, No. 6, pp. 2730, Nov. 1991.7 N. Amitay, “Modeling and computer simulation of wave propagation in lineal line-of-sight microcells,” IEEE Trans. Vehic. Technol., Vol VT-41, No. 4, pp. 337342, Nov. 1992.8 , K. A. Remley, H. R. Anderson, and A. Weisshar, “Improving the accuracy of ray-tracing techniques for indoor propagation modeling,” IEEE Trans. Vehic. Technol., pp. 23502358, Nov. 2000.9 “Concepts and results for 3D digital terrain-based wave propagation models: an overview,” IEEE J. Select. Areas Commun. pp. 10021012, Sept. 1993.10 “Applicability of ray-tracing techniques for prediction of outdoor channel characteristics,” IEEE Trans. Vehic. Technol., pp. 23362349, Nov. 2000.11 K. Schaubach, N.J. Davis IV, and T.S. Rappaport, “A ray tracing method for predicting path loss and delay spread in microcellular environments,” Proc. IEEE Vehic. Technol. Conf., pp. 932935, May 1992.12 A. Domazetovic, L.J. Greenstein, N. Mandayan, and I. Seskar, “A new modeling approach for wireless channels with predictable path geometries,” Proc. IEEE Vehic. Technol. Conf, Sept. 2002.13 A.J. Rustako, Jr., N. Amitay, G.J. Owens, and R.S. Roman, “Radio propagation at microwave frequencies for line-of-sight microcellular mobile and personal communications,” IEEE Trans. Vehic. Technol. Conf., Vol VT-40, No. 1, pp. 203210, Feb. 1991.14 W.C.Y. Lee, Mobile Communications Engineering. New York: McGraw-Hill, 1982.15 J.-E. Berg, R. Bownds, and F. Lotse, “Path loss and fading models for microcells at 900 MHz,” Vehic. Technol. Conf. Rec., pp. 666671, May 1992.16 E. McCune and K. Feher, “Closed-form propagation model combining one or more propagation constant segments,” Proc. IEEE Vehic. Technol. Conf., pp. 11081112, May 1997.17 S. Y Seidel and T. S. Rappaport, “914 MHz path loss prediction models for indoor wireless communications in multifloored buildings,” IEEE Transactions on Antennas and Propagation”, pp. 207217, Feb. 1992.18 S. Y. Seidel, T. S. Rappaport, M.J. Feuerstein, K.L. Blackard, L. Grindstaff, “The impact of surrounding buildings on propagation for wireless in-building personal communications system design,” Proceedings: IEEE Vehicular Technology Conference, pp. 814818, May 1992.19 A.J. Motley and J.M.P. Keenan, “Personal communication radio coverage in buildings at 900 MHz and 1700 MHz,” Electronic Letters, pp. 763764, June 1988.20 F.C. Owen and C.D. Pudney, “Radio propagation for digital cordless telephones at 1700 MHz and 900 MHz,” Electronic Letters, pp. 52-53, Sept. 1988.21 C.R. Anderson, T.S. Rappaport, K. Bae, A. Verstak, N. Tamakrishnan, W. Trantor, C. Shaffer, and L.T. Waton, “In-building wideband multipath characteristics at 2.5 and 60 GHz,” Proceedings: IEEE Vehicular Technology Conference, pp. 24-28, Sept. 2002.22 L.-S. Poon and H.-S. Wang, “Propagation characteristic measurement and frequency reuse planning in an office building,” Proceedings: IEEE Vehicular Technology Conference, pp. 18071810, June 1994.23 G. Durgin, T.S. Rappaport, and H. Xu, “Partition-based path loss analysis for in-home and residential areas at 5.85 GHz,” Proceedings: IEEE Globecom Conference, pp. 904909, Nov. 1998.24 A. F. Toledo and A.M.D. Turkmani, “Propagation into and within buildings at 900, 1800, and 2300 MHz,” Proc. IEEE Vehicular Technology Conference, pp. 633-636, May 1992.25 A.F. Toledo, A.M.D. Turkmani, and J.D. Parsons, “Estimating coverage of radio transmission into and within buildings at 900, 1800, and 2300 MHz,” IEEE Personal Communications Magazine, pp. 4047, April 1998.26 R. Hoppe, G. Wolfle, and F.M. Landstorfer, “Measurement of building penetration loss and propagation models for radio transmission into buildings,” Proc. IEEE Vehicular Technology Conference, pp. 22982302, April 1999.27 E.H. Walker, “Penetration of radio signals into buildings in cellular radio environments,” Bell Systems Technical Journal, Sept. 1983.28 W.C.Y. Lee, Mobile Communication Design Fundamentals, Indianapolis, IN: Sams, 1986.29 D.M.J. Devasirvathan, R.R. Murray, and D.R. Woiter, “Time delay spread measurements in a wireless local loop test bed,” Proceedings: IEEE Vehicular Technology Conference,” pp. 241245, May 1995.30 M. Feuerstein, K. Blackard, T. Rappaport, S. Seidel, and H. Xia, “Path loss, delay spread, and outage models as functions of antenna height for microcellular system design,” IEEE Transactions on Vehicular Technology, pp. 487498, Aug. 1994.31 S.T.S. Chia, “1.7 GHz propagation measurement for highway microcells,” Electronic Letters, pp. 12791280, Aug. 1990.32 V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, and R. Bianchi, “An empirically based path loss model for wireless channels in suburban environments,” IEEE Journal on Selected Areas in Communications, pp. 12051211, July 1999.33 A.J. Goldsmith and L.J. Greenstein, “A measurement-based model for predicting coverage areas of urban microcells,” IEEE J. Selected Areas Commun., Vol. SAC-11, No. 7, pp. 10131023, Sept. 1993.34 F. Ikegami, S. Takeuchi, and S. Yoshida, “Theoretical prediction of mean field strength for urban mobile radio,” IEEE Trans. Antennas Propagat., Vol. AP-39, No. 3, pp. 299302, March 1991.35 M.C. Lawton and J.P. McGeehan, “The application of GTD and ray launching techniques to channel modeling for cordless radio systems,” Vehic. Technol. Conf. Rec., pp. 125130, May 1992.36 R.J. Luebbers, “Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss,” IEEE Trans. Antennas Propagat., Vol. AP-32, No. 1, pp. 7076, Jan. 1984.37 C. Bergljung and L.G. Olsson, “Rigorous diffraction theory applied to street microcell propagation,” Globecom Conf. Rec., pp. 12921296, Dec. 1991.38 J.B Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Amer., pp. 116-130, 1962.39 R.G. Kouyoumjian and P.H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. IEEE, pp. 14481461, Nov. 1974.40 G.K. Chan, “Propagation and coverage prediction for cellular radio systems,” IEEE Trans. Vehic. Technol., Vol VT-40, No. 4, pp. 665670, Nov. 1991.41 K.C. Chamberlin and R.J. Luebbers, “An evaluation of Longley-Rice and GTD propagation models,” IEEE Trans. Antennas Propagat., vol AP-30, No. 11, pp. 10931098, Nov. 1982.42 M.I. Skolnik, Introduction to Radar Systems. 2nd Ed. New York: McGraw-Hill, 1980.43 S.Y. Seidel, T.S. Rappaport, S. Jain, M.L. Lord, and R. Singh, “Path loss, scattering, and multipath delay statistics in four European cities for digital cellular and microcellular radiotelephone,” IEEE Trans. Vehic. Technol., Vol VT-40, No. 4, pp. 721730, Nov. 1991.44 S.T.S. Chia, “1700 MHz urban microcells and their coverage into buildings,” IEE Antennas Propagat.Conf. Rec., pp. 504511, York, U.K., April 1991.45 D. Akerberg, “Properties of a TDMA Picocellular Office Communication System,” Proc: IEEE Globecom, pp. 13431349, Dec. 1988.46 P. Harley, “Short distance attenuation measurements at 900 MHz and 1.8 GHz using low antenna heights for microcells,” IEEE J. Selected Areas Commun., Vol. SAC-7, No. 1, pp. 511, Jan. 1989.47 J.-F. Wagen, “Signal strength measurements at 881 MHz for urban microcells in downtown Tampa,” Globecom Conf. Rec., pp. 13131317, Dec. 1991.48 R.J.C. Bultitude and G.K. Bedal, “Propagation characteristics on microcellular urban mobile radio channels at 910 MHz,” IEEE J. Selected Areas Commun., Vol. SAC-7, No. 1, pp. 3139, Jan. 1989.49 J.H. Whitteker, “Measurements of path loss at 910 MHz for proposed microcell urban mobile systems,” IEEE Trans. Vehic. Technol., Vol VT-37, No. 6, pp. 125129, Aug. 1988.50 H. Borjeson, C. Bergljung, and L.G. Olsson, “Outdoor microcell measurements at 1700 MHz.,” Vehic. Technol. Conf. Rec., pp. 927931, May 1992.51 M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE Trans. Vehic. Technol., Vol VT-29, No. 3, pp. 317325, Aug. 1980.52 T. Okumura, E. Ohmori, and K. Fukuda, “Field strength and its variability in VHF and UHF land mobile service,” Review Electrical Communication Laboratory, Vol. 16, No. 9-10, pp. 825873, Sept.-Oct. 1968.53 European Cooperative in the Field of Science and Technical Research EURO-COST 231, “Urban transmission loss models for mobile radio in the 900 and 1800 MHz bands,” Revision 2, The Hague, Sept. 1991.54 J. Walfisch and H.L. Bertoni, “A theoretical model of UHF propagation in urban environments,” IEEE Trans. Antennas and Propagation, pp. 1788-1796, Oct. 1988.55 M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” Electr. Lttrs., Vol. 27, pp. 21452146, Nov. 7, 1991.56 A. Algans, K. I. Pedersen, and P.E. Mogensen, “Experimental analysis of the joint statistical properties of azimuth spread, delay spread, and shadow fading,” IEEE Journal Selected Areas Communications, pp. 523531, April 2002.57 J. Weitzen and T. Lowe, “Measurement of angular and distance correlation properties of log-normal shadowing at 1900 MHz and its application to design of PCS systems,” IEEE Transactions on Vehicular Technology, pp. 265273, March 2002.58 W. Turin, R. Jana, S.S Ghassemzadeh, V. W. Rice, V. Tarokh, “Autoregressive modeling of an indoor UWB channel,” Proc. IEEE Conf. UWB Syst. Technol., pp. 7174, May 2002.59 S.S. Ghassemzadeh, L.J. Greenstein, A. Kavcic, T. Sveinsson, V. Tarokh, “Indoor path loss model for residential and commercial buildings,” Proc. Vehic. Technol. Conf., pp. 31153119, Oct. 2003.60 M. Marsan and G.C. Hess, “Shadow variability in an urban land mobile radio environment,” Electronics Letters, pp. 646648, May 1990.61 A. J. Goldsmith, L. J. Greenstein, and G.J. Foschini, “Error statistics of real-time power measurements in cellular channels with multipath and shadowing,” IEEE Transactions on Vehicular Technology, Vol. 43, No. 3, pp. 439-446, Aug. 1994.62 IEEE Journal Select. Areas Commun. Special Issue on Channel and Propagation Modeling for Wireless Systems Design, April 2002 and Aug. 2002.63 IEEE Journal Select. Areas Commun. Special Issue on Ultra-Wideband radio in multiaccess wireless communications, Dec. 2002.Chapter 3: Adaptive Modulation 1 A.J. Goldsmith and P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inform. Theory. Nov. 1997.2 A. J. Goldsmith “Design and performance of high-speed communication systems in time-varying radio channels,” Ph.D. dissertation, Dept. Elec. Engin. Comput. Science, University of California at Berkeley, 1994.3 J. F. Hayes, “Adaptive feedback communications,” IEEE Transactions on Communication Technology, vol. COM-16, pp. 2934, February 1968.4 J. K. Cavers, “Variable-rate transmission for Rayleigh fading channels,” IEEE Transactions on Communications, vol. COM-20, pp. 1522, February 1972.5 S. Otsuki, S. Sampei, and N. Morinaga, “Square-QAM adaptive modulation/TDMA/TDD systems using modulation level estimation with Walsh function,” Electronics Letters, vol. 31, pp. 169171, February 1995.6 W. T. Webb and R. Steele, “Variable rate QAM for mobile radio,” IEEE Transactions on Communications, vol. COM-43, pp. 22232230, July 1995.7 Y. Kamio, S. Sampei, H. Sasaoka, and N. Morinaga, “Performance of modulation-level-controlled adaptive-modulation under limited transmission delay time for land mobile communications,” in Proceedings of the IEEE VTC95, pp. 221225, July 1995.8 B. Vucetic, “An adaptive coding scheme for time-varying channels,” IEEE Transactions on Communications, vol. COM-39, pp. 653663, May 1991.9 S. M. Alamouti and S. Kallel, “Adaptive trellis-coded multiple-phased-shift keying for Rayleigh fading channels,” IEEE Transactions on Communications, vol. COM-42, pp. 23052314, June 1994.10 T. Ue, S. Sampei, and N. Morinaga, “Symbol rate and modulation level controlled adaptive modulation/ TDMA/TDD for personal communication systems,” in Proceedings of the IEEE VTC95, pp. 306310, July 1995.11 H. Matsuoka, S. Sampei, N. Morinaga, and Y. Kamio, “Symbol rate and modulation level controlled adaptive modulation/TDMA/TDD for personal communication systems,” in Proceedings of the IEEE VTC96, pp. 487491, April 1996.12 S. Sampei, N. Morinaga, and Y. Kamio, “Adaptive modulation/TDMA with a BDDFE for 2 Mbit/s multi-media wireless communication systems,” in Proceedings of the IEEE VTC95, pp. 311315, July 1995.13 M.-S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques.” IEEE Trans. Vehic. Technol., pp. 11651181, July 1999.14 J.A.C. Bingham, “Multicarrier modulation for data transmission: an idea whose time has come,” IEEE Comm. Mag., Vol. 28, No. 5, pp. 514, May 1990.15 P.S. Chow, J.M. Cioffi, and John A.C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., Vol. 43, No. 2/3/4, Feb.-Apr. 1995.16 M.Filip and E. Vilar, “Optimum utilization of the channel capacity of a satellite link in the presence of amplitude scintillations and rain attenuation,” IEEE Trans. Commun., Vol. 38, No. 11, pp. 19581965, Nov. 1990.17 A.M. Monk and L.B. Milstein, “Open-loop power control error in a land mobile satellite system,” I
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西北政法大学《服务礼仪》2024-2025学年第一学期期末试卷
- 菏泽学院《教育应用写作》2024-2025学年第一学期期末试卷
- 甘肃医学院《设计制图》2024-2025学年第一学期期末试卷
- 初中新班文化建设活动方案
- 2025年照明电子产品项目立项申请报告
- 2025年电视内镜手术系统项目申请报告模板
- 2025年特种用途钢丝及钢丝绳项目立项申请报告
- 房地产项目开发流程分析
- 2025版油气田开采权转让与安全生产监管合同
- 2025版信息安全产品定向采购及风险评估合同
- 2023施工技术交底编制与管理标准培训
- 物业管理考核细则-
- GB/T 3683-2023橡胶软管及软管组合件油基或水基流体适用的钢丝编织增强液压型规范
- 义教课程标准(2022年版)解读·徐蓝
- GA/T 954-2011法庭科学工具痕迹中凹陷痕迹的检验规范
- DB1331T004-2022雄安新区数据安全建设导则
- 环水保工程监理细则
- DB11-T1834-2021 城市道路工程施工技术规程高清最新版
- 手工电弧焊焊接头基本形式与尺寸
- 开拓进取:零碳汽车的材料脱碳之路
- (完整版)自我护理能力量表ESCA
评论
0/150
提交评论