




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.1直线间的夹角5.2平面间的夹角课时目标理解两条异面直线的夹角、二面角及二面角的平面角的概念,能用向量方法解决线线、面面所成角的计算问题会灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题1直线间的夹角包括两直线共面时的两直线的夹角和两直线异面时的异面直线的夹角,两直线的夹角范围是_;两条异面直线夹角的范围是_,其大小可以通过这两条异面直线的_的夹角来求若设两条异面直线的夹角为,它们的方向向量的夹角是,则有_或_.2二面角的大小就是指二面角的平面角的大小,其范围是_,二面角的平面角的大小(或其补角的大小)可以通过两个面的_的夹角求得,二面角和两平面法向量的夹角的关系是_一、选择题1若直线l1的方向向量与l2的方向向量的夹角是150,则l1与l2这两条异面直线所成的角等于()A30 B150C30或150 D以上均错2在棱长为1的正方体ABCDA1B1C1D1中,M,N分别为A1B1和BB1的中点,那么异面直线AM与CN所成角的余弦值为()A. B. C. D.3如果二面角l的平面角是锐角,点P到,和棱l的距离分别为2,4和4,则二面角的大小为()A45或30 B15或75C30或60 D15或604从点P引三条射线PA、PB、PC,每两条夹角均为60,则二面角BPAC的余弦值是()A. B. C. D.5在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为()A. B. C. D.6长方体ABCDA1B1C1D1中,ABAA12,AD1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为()A. B. C. D.题号123456答案二、填空题7若两个平面,的法向量分别是n(1,0,1),(1,1,0)则这两个平面所成的锐二面角的度数是_8如图,已知正三棱柱ABCA1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是_9已知三棱柱ABCA1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为_三、解答题10长方体ABCDA1B1C1D1中,AB4,BCBB12,E,F分别是面A1B1C1D1与面B1BCC1的中心,求异面直线AF与BE所成角的余弦值11.在三棱锥SABC中,SABSACACB90,AC2,BC4,SB4.(1)证明:SCBC;(2)求二面角ABCS的大小能力提升12.如图所示,在正三棱柱ABCA1B1C1中,ABAA1,点D是A1B1的中点,点E在A1C1上,且DEAE.求直线AD和平面ABC1所成角的正弦值13.如图,直三棱柱ABCA1B1C1中,ACBC,AA1AB,D为BB1的中点,E为AB1上的一点,AE3EB1.(1)证明:DE为异面直线AB1与CD的公垂线;(2)设异面直线AB1与CD的夹角为45,求二面角A1AC1B1的余弦值1异面直线所成的角可以利用两个向量的夹角来求2二面角可以利用立体几何方法作出二面角的平面角,然后利用几何方法或向量进行计算;也可以直接利用两个平面的法向量来求,要注意角的范围3利用向量解题,大致可以利用基底法和坐标法5夹角的计算51直线间的夹角52平面间的夹角知识梳理10,方向向量20,法向量相等或互补作业设计1A2D如图所示,建立空间直角坐标系,则A(1,0,0),M,C(0,1,0),N.,.,|.cos,.3B如图(1),(2)所示,分别是P在二面角l的内部、外部时的情况因为PA,所以PAl,因为PCl,所以l面PAC,同理,l面PBC,而面PAC与面PBC有公共点,所以面PAC和面PBC应重合,即A,B,C,P在同一平面内,ACB是二面角的平面角在RtAPC中,sinACP,所以ACP30.在RtBPC中,sinBCP,所以BCP45,故ACB304575(图(1),或ACB453015(图(2)图(1)图(2)4B在射线PA上取一点O,分别在平面PAB、PAC内作OEPA,OFPA交PB、PC于E、F,则EOF为所求二面角的平面角EOF中,令EF1,则由题意可求得,OEOF,cosEOF.5B建立如图所示的坐标系,设正方体的棱长为1,则(1,0,1),(1,1,)设平面A1DE的法向量n1(x,y,z),则解得令z1,n1(1,1)平面ABCD的一个法向量为n2(0,0,1),cosn1,n2.6B建立坐标系如图则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2)(1,0,2),(1,2,1),cos,.所以异面直线BC1与AE所成角的余弦值为.760解析cosn,n,120.故两平面所成的锐二面角为60.890解析建立如图所示的坐标系,设正三棱柱的棱长为1,则B,M,B1,因此,设异面直线AB1与BM所成的角为,则cos |cos,|0,90.9.解析建立如图所示的空间直角坐标系,设AB1.因为A1D平面ABC,ADBC,由AD,AA11知A1D.故A1.又A,B,cos,.又CC1AA1,cos,cos,故异面直线AB与CC1所成的角的余弦值为.10解以D为原点建立如图所示的空间直角坐标系,则A(2,0,0),B(2,4,0),C1(0,4,2),A1(2,0,2),E(1,2,2),F(1,4,1),(1,4,1),(1,2,2),|3,|3,1825,cos,.异面直线所成角的范围是,设AF与BE所成角为,则cos |cos,|.11(1)证明由已知SABSACACB90,以C点为原点,建立如图所示的空间直角坐标系,则A(0,2,0),B(4,0,0),C(0,0,0),S(0,2,2),则(0,2,2),(4,0,0),0,SCBC.(2)解SABSAC90,SA平面ABC,(0,0,2)是平面ABC的法向量设侧面SBC的法向量为n(x,y,z),(0,2,2),(4,0,0)n0,n0,x0.令z1,则y,则得平面SBC的一个法向量n(0,1),cos,n,即二面角ABCS的大小为60.12解如图所示,设O是AC的中点,以O为原点建立空间直角坐标系,不妨设AA1,则AB2,相关各点的坐标分别是A(0,1,0),B(,0,0),C1(0,1,),D.易知(,1,0),(0,2,),(,)设平面ABC1的一个法向量为n(x,y,z),则有解得xy,zy,故可取n(1,)所以cosn,.由此可知,直线AD和平面ABC1所成角的正弦值为.13(1)证明以B为坐标原点,射线BA、BB1为x轴正半轴、y轴正半轴,建立如图所示的空间直角坐标系设AB2,则A(2,0,0),B1(0,2,0),D(0,1,0),E(,0)又设C(1,0,c),则(,0),(2,2,0),(1,1,c)于是0,0,故DEB1A,DEDC,又DEAB1E,CDDED.所以DE为异面直线AB1与CD的公垂线(2)解因为,等于异面直线AB1与CD的夹角,故|B1A|cos 45,即24.解得c,故(1,0,)又(0,2,0),所以(1,2,)设平面AA1C1的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46200-2025纤维增强聚合物基复合材料超低温线膨胀系数的测定
- 养护安全培训记录课件
- 农业年报统计培训课件
- 化工企业环保安全培训课件
- 化工仪表与工艺安全课件
- 兴宁驾驶考场安全员培训课件
- 内部顾客与外部顾客课件
- 内部单位检查课件
- 内蒙安全员培训学费课件
- 先秦两汉诗歌课件
- 2025秋人教鄂教版(2024)科学一年级第一单元走近科学《1“钓鱼”游戏》 教学设计
- 食品腐烂变质安全培训课件
- 2025网络设备购销合同文本
- 2025年山东省东营市辅警协警笔试笔试预测试题(附答案)
- 风机高空作业安全培训课件
- 2024-2025学年南充市七年级下英语期末考试题(含答案和音频)
- 成都产业投资集团有限公司所属产业投资板块企业2025年招聘投资管理等岗位的考试参考试题及答案解析
- 2025年法院书记员招聘考试笔试试题含答案
- 2025至2030中国氢燃料电池堆行业项目调研及市场前景预测评估报告
- 搭建铁棚合同(标准版)
- 2025年铜仁市招聘工会社会工作者11人考试参考试题及答案解析
评论
0/150
提交评论