系统响应及系统稳定性.doc_第1页
系统响应及系统稳定性.doc_第2页
系统响应及系统稳定性.doc_第3页
系统响应及系统稳定性.doc_第4页
系统响应及系统稳定性.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数字信号处理 实验报告 实验一、系统响应及系统稳定性 专业:_ 班级:_组员承担任务指导教师评价意见 实验一:系统响应及系统稳定性一、实验目的(1) 掌握求系统响应的方法。(2) 掌握时域离散系统的时域特性。(3) 分析、观察及检验系统的稳定性。二、实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入型号,可以由差分方程、单位脉冲响应或系统函数求出系统对该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。系统的时域特性指的是系统的线性时不变特性、因果性和稳定性。重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应应满足绝对可和的条件。系统的稳定性要求由其差分方程的系数决定。实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出都是有界输出,或者检查系统的单位脉冲响应应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。系统的稳态输出是指当n时,系统的输出。如果系统稳定,信号加人系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。 注意在以下的试验中均假设系统的初始状态为零。三、实验内容及步骤(1) 编制程序,包括产生输入信号、单位脉冲响应序列的子序列,用filter函数或conv函数求解系统输出响应的主程序。程序中要有绘制信号波形的功能。(2) 给定一个低通滤波器的差分方程为 输入信号 分别求出的系统响应,并画出其波形。求出系统的单位脉冲响应,画出其波形。在MATLAB的M文件中编写程序并得到图形:A=1,-0.9;B=0.05,0.05; %系统差分方程系数向量B和Ax1n=1 1 1 1 1 1 1 1 zeros(1,50); %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y=h(n);stem(hn,g,.); %调用函数stem绘图title(a) 系统单位脉冲响应h(n);y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y=y1(n);stem(y1n,g,.);title(b) 系统对R8(n)的响应y1(n);y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y=y2(n);stem(y2n,g,.);title(c) 系统对u(n)的响应y2(n);(3) 给定系统的的单位脉冲响应为用线性卷积法求分别对系统的输出响应,并画出波形。在MATLAB的M文件中编写程序并得到图形:x1n=1 1 1 1 1 1 1 1 ; %产生信号x1(n)=R8(n)h1n=ones(1,10) zeros(1,10);h2n=1 2.5 2.5 1 zeros(1,10);y21n=conv(h1n,x1n); %x1n和h1n的卷积是y21ny22n=conv(h2n,x1n); %x1n和h2n的卷积是y22nfigure(2);subplot(2,2,1);y=h1(n);stem(h1n,g,.); %调用函数stem绘图title(d) 系统单位脉冲响应h1(n);subplot(2,2,2);y=y21(n);stem(y21n,g,.);title(e) h1(n)与R8(n)的卷积y21(n);subplot(2,2,3);y=h2(n);stem(h2n,g,.); %调用函数stem绘图title(f) 系统单位脉冲响应h2(n);subplot(2,2,4);y=y22(n);stem(y22n,g,.);title(g) h2(n)与R8(n)的卷积y22(n); (4) 给定一个谐振器的差分方程为令谐振器的谐振频率为0.4rad。用试验方法检查系统是否稳定。输入信号为时,画出系统输出波形。给定输入信号为求出系统的输出响应,并画出其波形。在MATLAB的M文件中编写程序并得到图形:un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=1,-1.8237,0.9801;B=1/100.49,0,-1/100.49; %系统差分方程系数向量B和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对正弦信号的响应y32(n)figure(3);subplot(2,1,1);y=y31(n);stem(y31n,g,.);title(h) 谐振器对u(n)的响应y31(n);subplot(2,1,2);y=y32(n);stem(y32n,g,.);title(i) 谐振器对正弦信号的响应y32(n); 数据分析:由图可以看出谐振器对u(n)的输出响应结果趋于常数0,而对于正弦信号的输出响应结果是发散的。结论:通过这次实验我们了解了如何用filter函数或conv函数求解系统输出响应的主程序,同时也对判断系统稳定性的方法有了一定的了解即:只要用单位阶跃序列作为输入信号,如果稳态输出趋于常数(包括零),则系统一定稳定,否则系统不稳定。由第三个实验的输出波形可知当输入信号是un时,输出趋于零,所以该系统是稳定的。四、思考题1、如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应?如何求?答:可以。把输入信号进行分段,分别进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论