ICP基本原理详细解答.doc_第1页
ICP基本原理详细解答.doc_第2页
ICP基本原理详细解答.doc_第3页
ICP基本原理详细解答.doc_第4页
ICP基本原理详细解答.doc_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1. 原子光谱的理论基础光谱分析是根据物质的特征光谱来研究物质的化学组成、结构和存在状态的一类分析领域,它可分为原子发射光谱分析、原子吸收光谱分析、分子发射光谱分析、分子吸收光谱分析、X射线荧光光谱分析、原子和分子荧光光谱分析、红外和拉曼光谱分析等各类分析方法。原子发射光谱分析是根据试样物质中气态原子(或离子)被激发以后,其外层电子辐射跃迁所发射的特征辐射能(不同的光谱),来研究物质化学组成的一种方法。常称为光谱化学分析,也简称为光谱分析。 1. 1 原子的结构和辐射跃迁原子光谱是原子内部运动的一种客观反映,原子光谱的产生与原子的结构密切有关。在原子光谱分析时,最被关心的是光谱线波长的选择,以及所选光谱线的强度,而谱线的波长以及影响谱线强度的因素与原子结构密切相关。因此,一个光谱分析工作者有必要对原子结构及辐射跃迁过程有所了解。早在19世纪中,人们已积累了一些原子光谱的实践知识。Bunsen及Kirchhoff最先将分光镜应用于元素的鉴定及分析,并将元素与特征谱线相联系,认识到线光谱是原子发射的。1913年Bohr提出了原子结构学说,其要点如下:9)电子绕核作圆周运行,可以有若干个分立的圆形轨道,在不同轨道上运行的电子处于不同的能量状态。在这些轨道上运行的电子不辐射能量,即处于定态。在多个可能的定态中,能量最低的态叫基态,其它称为激发态10)原子可以由某一定态跃迁至另一定态。在此过程中发射或吸收能量,两态之间的能量差等于发射或吸收一个光子所具有的能量,即=E2-E1nh上式称为Bohr频率条件。式中,E2 E1。如E2为起始态能量,则发射辐射;如E2为终止态能量,则吸收辐射。h为planck常数(6.626210-34JS)。的正整数倍。即p必须等于h/2F17)原子可能存在的定态只能取一些不连续的状态,即电子只能沿着特定的轨道绕核旋转。在这些轨道上,电子的轨道运动角动量P=FP )(n=1,2,3pnh/2此式称为Bohr量子化规则,n称为主量子数据。Last edit by shaweinanBohr的原子结构学说以及以后的量子力学逐步完善了原子的结构理论。人们认识到:电子在能级间的跃迁时就产生谱线。若电子由低能级向高能级跃迁时就产生吸收光谱,电子由高能级向低能级跃迁时,就产生发射光谱。例如右图所示的钠离子有高于基态2.2ev和3.6ev的两个激发态(ev为“电子伏特”,表征能量高低),当处于基态的钠原子受外界能量激发时,原子核外的电子跃迁到高能级的激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其他较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,2.2ev和3.6ev的能量的激发态回到基态分别发射589.0nm和330.3nm的谱线。核外电子从第一激发态返回基态时所发射的谱线称为第一共振发射线。由于基态与第一激发态之间的能级差异最小,电子跃迁几乎最大,故共振发射线最易产生,对多数元素而讲,它是所有发射谱线中最灵敏的(如钠的589.0nm),在原子发射光谱分析中通常以共振线为分析线。 1. 2 原子的激发和电离不同的原子具有不同的能级,在一般的情况下,原子处于能量最低的状态,即基态,当电子或其他粒子与原子相互碰撞,如果其动能稍大于原子的激发能,就可使该气态原子获得一定的能量,从原子的基态过渡至某一较高能级,这一过程叫做激发。使原子由基态跃迁到较高能级(即激发态)所需的能量称激发能,以电子伏(ev)表示。从原子能级图可以看出,原子可以被激发到不同的高能级。不同的高能级都有其固定的能量即激发电位。激发能最低的能级(第一激发态)所对应的能量为该原子的第一共振电位,由于其激发能最小,最容易被激发至该能级,因此第一共振线在元素中经常是最强的谱线,常被用作光谱定性分析的灵敏线及低浓度光谱定量分析的分析线。当电子或其他粒子与原子相互碰撞时,如果其能量大于原子的电离能,则它们相互碰撞时就可能使气态原子电离成气态的一级离子,如果能量更大,还可使离子处于激发态,甚至更进一步变成二级、三级等高级离子。因此,所谓激发能是指气态原子或离子,由基态最低能级过渡到激发态所需的能量,这种过渡称激发;而电离能是指从气态原子基态最低能级移去电子至电离状态所需的能量,移去一个电子所需能量称第一电离能,移去二个、三个电子所需能量相应为第二电离能、第三电离能。激发能和电离能的高低是原子、离子结构固有的特征,是衡量元素激发和电离难易的程度和谱线灵敏度及波长位置的一个重要标N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集板凳 只看作者回复于:2007-5-24 0:08:00回复本贴 回复主题 编辑 举报 管理 志,其高低取决于原子或离子中原子核对外层电子的作用力的大小。在光谱分析常用光源中激发的光谱主要是原子谱线和一次电离的离子谱线,只有在个别情况下出现二次电离的离子谱线。在光谱分析中,对于原子光谱线通常在元素符号后加上罗马字I,如Na I 589.593nm,Mg I 285.2nm来表示,而对于一级或二级离子光谱线,则常在元素符号加上罗马字II、III来表示。如Mg II 279.553nm、Ba II 455.403nm、La II 394.910nm,即为这些元素的一级离子光谱线。 习惯上我们按原子的一次电离能的大小把元素粗略地分为易激发易电离元素、中等激发中等电离元素和难激发难电离元素。其与周期表的关系如图所示。E=D在痕量元素的光谱分析时,常选用灵敏的原子第一共振线作分析线,其分析线的波长范围可以用 E2-E1= 3电子伏),因此这些元素第一共振线的波长处于可见及近红外区,例如:钾(K)的I589.953nm;对于那些非金属元素,由于其第一共振态激发能很高( 177.499nm、硫(S)的I 182.034nm;而对于大多数元素的第一共振态激发能在3-6电子伏之间,因而它们的第一共振线大多数处于近紫外区(200-380nm),例如:铁(Fe)的I 259.994nm、锌(Zn)的I 213.856nm;当用火花、等离子体等激发能量大的光源时,对碱土金属及过渡元素也常选用灵敏的一次离子的第一共振线作为分析线。这些谱线的规律如同原子一样,它们的第一共振线也大多数处于近红外区,例如:钙(Ca)的II 393.366nm、钡(Ba)的II 455.403nm。1. 3谱线的分裂和变宽5塞曼效应:1896年塞曼(Zeeman)发现在约几千高斯以上的足够强的磁场中,谱线会分裂成几条偏振化的谱线,这种现象叫做塞曼效应。一般场合,由塞曼分裂出来的各谱线波长相差极小,约为0.00x-0.0xnm。6斯塔克效应:1913年斯塔克(Stark)发现在外电场的作用下出现,出现谱线分裂,分裂的程度随电场强度的提高而增加,这种现象称为斯塔克效应。在高压火化光源中,这种效应可能是显著的,但在ICP光源中,这种谱线变宽非常小,可以忽略。7超精细结构:谱线的超精密结构是由于原子核效应所引起的,即核的质量和核自旋的不同均可引起原子能级的超精细分裂,这种因核自旋和同位素效应引起光谱支项分裂造成的极微小的波长位移,称为原子光谱线的超精细结构,其分裂谱线之间的距离约0.00x-0.0xnm,与塞曼分裂相当。8谱线的自然宽度:原子发谱的光谱并不是严格的单色的线状光谱,它具有一定的宽度和轮廓,一般谱线的自然宽度在10-6-10-5nm。9谱线的多普勒变宽:多普勒(Doppler)变宽又称热变宽,它是由于原子在发射过程中朝着和背离检测器作随机的热运动而产生。多普勒变宽随原子量增加而减小,但随温度增加而加宽。一般这种变宽约在10-4-10-3nm。10谱线的碰撞变宽:发射跃迁的原子与同种原子或其他气体原子、分子相碰撞使振动受到阻尼时也可使谱线变宽。与同种原子碰撞时引起的变宽称赫茨玛(Holtzmark)变宽;与不同种类原子或分子碰撞引起的称洛仑茨(Lorentz)变宽。其中洛仑茨变宽较明显,一般中10-3nm左右。在ICP光谱分析中,多普勒变宽及洛仑茨变宽是主要的变宽因素,由这两种效应确定的光谱线总轮廓称为沃伊特(Voigt)轮廓。一般谱线宽度在10-4-10-3nm。 1. 4 光谱线的自吸收和自蚀从光源中部所产生的辐射,当通过其外围时有可能被同类基态原子吸收,这一现象一旦出现则称为自吸收。一个原子、离子或分子当它是处于相关跃迁能级的粒子时,它很容易吸收与其能级相对应的光量子跃迁至较高能级。在一个热光源中,被吸收的光量子仅有很小一部分的几率以荧光形式进行再辐射,由于第二类碰撞使激发能转化为粒子动能或振动能,因此,自吸收过程使光谱线的强度减弱且破坏了在等离子区中辐射强度与粒子浓度间的关系。在光谱分析时,常引入一个经验常数,即自吸收系数来描述光谱定量关系式:I =ACb 式中I为光谱线强度,C为被测元素的浓度,A是与蒸发、激发过程及试样组成有关的参数,B为经验常数即自吸收系数(b 1)。由于光谱线是具有一定宽度和轮廓的谱线,即谱线轮廓是谱线强度随频率(或波长)而变化的分布曲线,由于自吸收的存在也影响其谱线的轮廓,使峰值强度或积分强度发生改变。在实际光源中,辐射总是由处于较高温度的中心区通过低温蒸气的外部边缘部分进N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集5# 只看作者回复于:2007-5-24 0:10:00回复本贴 回复主题 编辑 举报 管理 行发射的。在光源中其中心部分激发温度高,存在较多的激发态的原子,但在光源的外围,是一个低温区,含有大量基态原子,当原子从光源中心所发射的谱线,其中心波长附近实际上完全被外围基态原子所吸收,被吸收的辐射由外围本身的辐射来代替,但发射很弱,不能完全补偿光源中心辐射的损失,因而在谱线中心吸收最严重,当原子浓度很高时,谱线轮廓在中央部就出现凹陷,即产生自蚀,如自吸收一样一般只有第一共振线才发生自蚀,如图是有自吸谱线轮廓。 2. 激发光源激发光源是原子发射光谱仪中一个极为重要的组成部分,它的作用是给分析试样提供蒸发、原子化或激发的能量。在光谱分析时,试样的蒸发、原子化和激发之间没有明显的界限,这些过程几乎是同时进行的,而这一系列过程均直接影响谱线的发射以及光谱线的强度。试样中组份元素的蒸发、离解、激发、电离、谱线的发射及光谱线强度除了与试样成份的熔点、沸点、原子量、化学反应、化合物的离解能、元素的电离能、激发能、原子(离子)的能级等物理和化学性质有关以外,还跟所使用的光源特性密切相关,不同的激发光源对各类样品、各种元素具有不同的蒸发行为和激发能量,因此要根据不同的分析对象,选择具有相应特性的激发光源。由于样品的种类繁多、形状各异、元素对象、浓度、蒸发及激发难易不同,对光源的要求也不同。没有一种万能光源能同时满足各种分析对象的要求。各类光源在蒸发温度、激发温度、放电稳定性等各方面都各有其特点和应用范围。原子发射光谱分析的误差,主要来源是光源,因此在选择光源是应尽量满足以下要求:3)高灵敏度,随着样品中浓度微小变化,其检出的信号有较大的变化;4)低检出限,能对微量和痕量成份进行检测;5)良好的稳定性,试样能稳定地蒸发、原子化和激发,分析结果具有较高的精密度;6)谱线强度与背景强度之比大(信噪比大);7)分析速度快;8)结构简单,容易操作,安全;N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集6# 只看作者回复于:2007-5-24 0:11:00回复本贴 回复主题 编辑 举报 管理 9)自吸收效应小,校准曲线的线性范围宽。原子发射光谱仪的类型,目前常用的光源有以下两种:一类是经典光源(电弧及火花),另一类是等离子体及辉光放电光源,其中以电感耦合等离子体光源(ICP)居多,在不同的领域中得到广泛的应用。 2. 1 电感耦合等离子体光源(ICP)等离子体(Plasma)一词首先由Langmuir在1929年提出,目前一般指电离度超过0.1%被电离了的气体,这种气体不仅含有中性原子和分子,而且含有大量的电子和离子,且电子和正离子的浓度处于平衡状态,从整体来看是处于中性的。从广义上讲像火焰和电弧的高温部分、火花放电、太阳和恒星表面的电离层等都是等离子体。等离子体可以按温度分为高温等离子体和低温等离子体两大类。当温度高达106-108K时,所有气体的原子和分子完全离解和电离,称为高温等离子体;当温度低于105K时,气体部分电离,称为低温等离子体。在实际应用中又把低温等离子体分为热等离子体和冷等离子体。当气体压力在1.013X105帕(相当1大气压)左右,粒子密度较大,电子浓度高,平均自由程小,电子和重粒子之间碰撞频繁,电子从电场获得动能很快传递给重粒子,这样各种粒子(电子、正离子、原子、分子)的热运动能趋于相近,整个气体接进或达到热力学平衡状态,此时气体温度和电子温度基本相等,温度约为数千度到数万度,这种等离子体称为热等离子体。例如直流等离子体喷焰(DCP)和电感耦合等离子体炬(ICP)等都是热等离子体,如果放电气体压力较底,电子浓度较小,则电子和重粒子碰撞机会就少,电子从电场获得的动能不易与重粒子产生交换,它们之间动能相差较大电子平均动能可达几十电子伏,而气体温度较低,这样的等离子体处于非热力学平衡体系,叫做冷等离子体,例如格里姆辉光放电、空心阴极灯放电等。在光谱分析中所谓的等离子体光源,通常指外观上类似火焰的一类放电光源。目前最常用的有三类:即电感耦合等离子体炬(ICP)、直流等离子体喷焰(DCP)和微波感生等离子体炬(MIP)。对于MIP来说,虽然允许微量进样,耗气量小,功率低、易测定非金属,但对多数金属检测限差、元素间干扰严重、需要氦气,因此主要用于色谱分析的检测器。ICP和DCP这两类等离子体光源具有较好的分析性能,均已应用于原子发射光谱仪。电感耦合等离子体原子发射光谱(ICP-AES)技术的先驱是Greenfiald和Fasel,他们在1964年分别发表了各自的研究成果。七十年代后该技术取得了真正的进展,1974年美国的Thermo Jarrell-Ash公司研制出了第一台商用电感耦合等离子体原子发射光谱仪。ICP光源主要优点是:1)检出限低:许多元素可达到1ug/L的检出限2)测量的动态范围宽:5-6个数量级3)准确度好4)基体效应小:ICP是一种具有6000-7000K的高温激发光源,样品又经过化学处理,分析用的标准系列很易于配制成与样品溶液在酸度、基体成分、总盐度等各种性质十分相似的溶液。同时,光源能量密度高,特殊的激发环境通道效应和激发机理,使ICP光源具有基体效应小的突出优点。5)精密度高:RSD0.5%6)曝光时间短:一般只需10-30秒7)17)原子发射光谱分析所具有的多元素同时分析的特点与其他分析方法逐个元素单独测定相比,无论从效率的经济,技术等方面都具有很大的特点。这也是ICP原子发射光谱分析取得很大进展的原因之一N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集7# 只看作者回复于:2007-5-24 0:11:00回复本贴 回复主题 编辑 举报 管理 2.2 ICP光源的装置及其形成炬管的组成:三层石英同心管组成(如右图)。冷却(等离子)氩气以外管内壁相切的方向进入ICP炬管内,有效地解决了石英管壁的冷却问题。防止其被高温的ICP烧熔。炬管置于高频线圈的正中,线圈的下端距中管的上端2-4mm,水冷的线圈连接到高频发生器的输出端。高频电能通过线圈耦合到炬管内电离的氩气中。当线圈上有高频电流通过时,则在线圈的轴线方向上产生一个强烈振荡的环形磁场如图所示。开始时,炬管中的原子氩并不导电,因而也不会形成放电。当点火器的高频火花放电在炬管内使小量氩气电离时,一旦在炬管内出现了导电的粒子,由于磁场的作用,其运动方向随磁场的频率而振荡,并形成与炬管同轴的环形电流。原子、离子、电子在强烈的振荡运动中互相碰撞产生更多的电子与离子。终于形成明亮的白色Ar-ICP放电,其外形尤如一滴刚形成的水滴。在高度电离的ICP内部所形成的环形涡流可看作只有一匝的变压器次级线圈,而水冷的工作线圈则相当于变压器的初级线圈,它们之间的耦合,使磁场的强度和方向随时间而变化,受磁场加速的电子和离子不断改变其运动方向,导致焦耳发热效应并附带产生电离作用。这种气体在极短时间内在石英的炬管内形成一个新型的稳定的“电火焰”光源。样品经雾化器被气动力吹散击碎成粒径为1-10um之间的细粒截氩气由中心管注入ICP中,雾滴在进入ICP之前,经雾化室除去大雾滴使到达ICP的气溶胶微滴快速地去溶、蒸发和原子化。N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集8# 只看作者回复于:2007-5-24 0:12:00回复本贴 回复主题 编辑 举报 管理 2. 3 ICP光源的特性12)趋肤效应:高频电流在导体上传输时,由于导体的寄生分布电感的作用,使导线的电阻从中心向表面沿半径以指数的方式减少,因此高频电流的传导主要通过电阻较小的表面一层,这种现象称为趋肤效应。等离子体是电的良导体,它在高频磁场中所感应的环状涡流也主要分布在ICP的表层。从ICP的端部用肉眼即可观察到在白色圈环中有一亮度较暗的内核,俗称“炸面圈”结构。这种结构提供一个电学的屏蔽筒,当试样注入ICP的通道时不会影响它的电学参数,从而改善了ICP的稳定性。13)通道效应由于切线气流所形成的旋涡使轴心部分的气体压力较外周略低,因此携带样品气溶胶的载气可以极容易地从圆锥形的ICP底部钻出一条通道穿过整个ICP。通道的宽度约2mm,长约5cm。样品的雾滴在这个约7000K的高温环境中很快蒸发、离解、原子化、电离并激发。即通道可使这四个过程同时完成。由于样品在通过通道的时间可达几个毫秒,因此被分析物质的原子可反复地受激发,故ICP光源的激发效率较高。 2. 4 ICP光源的气流ICP光源自问世以来主要是在氩气氛中工作的,三股气流所起的作用各不相同,它们分别是:8)冷却气:沿切线方向引入外管,它主要起冷却作用,保护石英炬管免被高温所熔化,使等离子体的外表面冷却并与管壁保持一定的距离。其流量约为10-20L/min,视功率的大小以及炬管的大小、质量与冷却效果而定,冷却气也称等离子气。9)辅助气:通入中心管与中层管之间,其流量在0-1.5L/mim,其作用是“点燃”等离子体,并使高温的ICP底部与中心管,中层管保持一定的距离,保护中心管和中层管的顶端,尤其是中心管口不被烧熔或过热,减少气溶胶所带的盐分过多地沉积在中心管口上。另外它又起到抬升ICP,改变等离子体观察度的作用。10)雾化气:也称载气或样品气,作用之一是作为动力在雾化器将样品的溶液转化为粒径只有1-10um的气溶胶,作用之二是作为载气将样品的气溶胶引入ICP,作用之三是对雾化器、雾化室、中心管起清洗作用。雾化气的流量一般在0.4-1.0L/min,或压力在15-45psi。N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集9# 只看作者回复于:2007-5-24 0:13:00回复本贴 回复主题 编辑 举报 管理 2. 5 进样系统进样系统是ICP仪器中极为重要的部分,也是ICP光谱分析研究中最活跃的领域,按试样状态不同可以分别用液体、气体或固体直接进样。 2. 5. 1气动雾化和超声雾化进样2. 5. 1. 1气动雾化器和超声雾化器在ICP装置中常采用气动雾化装置,一般要求雾化器能采用较低的载气流量,如0.5-1 L/min、具有较低的样品提升量,如0.5-2 ml/min、较高的雾化效率、记忆效应小、雾化稳定性好,且适于高盐分溶液雾化及较好耐腐蚀能力,这些要求给雾化器的设计、制造带来苛刻的限制。ICP所用的气动雾化器有两种基本的结构:同心型雾化器和正交型雾化器。在同心型雾化器上,通入试样溶液的毛细管被一股高速的与毛细管轴相平行的氩气流所包围,见右图。采用固定式结构,具有不用调节、雾化效率较高、记忆效应小、雾化稳定性好、耐酸(HF除外)等优点,但制作时各参数不易准确控制且毛细管容易堵塞。目前常用的商品化同心型雾化器有Meinhard和GE两种品牌。新型的同心雾化器可以用不同的材料制造,以用于不同的目的,同时对高盐量溶液的雾化性能也有较大的提高,例如:GE公司的海水雾化器能海水直接进样而不堵塞。正交型(又称交叉型)气动雾化器的进液毛细管和雾化气毛细管成直角,见左图。过去常采用可调式结构,调节两毛细管之间的距离,以获得较好的雾化稳定性,但这种调节的人为因素很大,因此目前的正交型雾化器也大多采用固定式结构。相对同心型雾化器而言,它比较牢靠、耐盐性能较好,但雾化效率稍差。气动雾化器溶液的提升,一般利用文丘里效应在进液毛细管未端形成负压自动提升,溶液的提升受载气的流量、压力及溶液的粘度和密度的影响,采用蠕动泵来提升,可减小溶液物理性质的影响及选择合适提升量,有利于与等离子体系统相匹配。为适应高盐分试样的需要,Babington(巴比顿)设计了一种简便而不易堵塞的雾化器。其结构原理是气流从一细孔中高速喷出,将沿V型槽流下的蒲层液流破碎成雾滴,避免了高盐分堵塞喷嘴的弊端,但这种雾化器没有负压自动提升能力,其雾化效率较低,而影响仪器的检出限。Babington雾化器实际上是正交型雾化器的一种。见右图气动雾化器的雾化效率较低,一般为3-5%左右,试样溶液大部分以废液流掉。超声雾化器是用超声波振动的空化作用把溶液雾化成气溶胶(如左图)。超声雾化器装置比气动雾化装置复杂,由超声波发生器、进样器、雾室、去溶装置几部分组成(如下图)。使用时常用进样器(蠕动泵)把试样溶液输入雾室,由超声波发生器的电磁振荡通过高频电缆与雾室中的换能器(例如锆钛酸铅压电晶片)相连,晶片在高频电压作用下产生谐振,将电磁能转变为机械能而产生超声波,当超声波连续辐射到雾室中试样溶液时,由于样品溶液与空气界面间的空化作用,使液体形成气溶胶,然后用载气通过雾室把试样气溶胶去溶后引入炬管。采用超声雾化时气溶胶产生速度和载气流量可分别选择最佳条件,所产生的气溶胶雾滴更细更均匀,雾化效率可提高10倍(如右图),如果样品基体不复杂的话,超声雾化器的检出限要比气动雾化器的好一个数量级左右,如果有干扰,例如背景漂移或光谱重叠,则这些效应亦以同样的程度增加。同样,当被雾化的溶液含盐较高时,在等离子炬管的中心管上的积盐也会增加。超声雾化器的记忆效应较大,与气动雾化器相比,稳定性还有待进一步提高。N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集11# 只看作者回复于:2007-5-24 0:14:00回复本贴 回复主题 编辑 举报 管理 2. 5. 1. 2雾化室m。这些大雾滴必须用雾化室除去。mm直径的雾滴。遗憾的是,一些雾化器,特别是气动雾化器所产生的气溶胶都具有高度的分散性,其雾滴直径可达100m气溶胶输送效率定义为:实际到达等离子体的被雾化溶液的质量百分数。为了提高着一百分数和为了使到达等离子体的气溶胶微粒快速地去溶、蒸发和原子化,雾化器必须产生小于10 常用的雾化室有筒型、梨型和旋流雾化室。见下图:筒型雾化室是利用雾化室内壁上的湍流沉降作用,或利用重力作用除去较大的雾滴。在早期的ICP中,筒型雾化室用得较为普遍。旋流雾化室是圆锥形的,气溶胶以切线方向喷入雾化室并向下盘旋行进,这种运动产生了作用在雾滴上的离心力,从而将雾滴抛向器壁。在雾化室底部,气溶胶改变方向并与原来路线同轴地成更紧密的螺旋形向容器顶部移动。抛向器壁的大雾滴由底部的废液管排出,而小雾滴通入伸入容器顶部一小段管进入炬管。旋流雾化室具有高效、快速和记忆效应小的特点,在现代ICP中已得到广泛的应用。梨型雾化室的去溶剂能力较强,特别适用于有机(油样)进样系统。2. 5. 2挥发性氢化物或金属进样在原子吸收光谱法和原子荧光光谱法中广泛应用挥发性氢化物或金属进样技术,也可应用于ICP光谱法,目前商品ICP光谱仪中也常带这些附件,这种方法可应用于Ge、Sn、Pb、As、Sb、Bi、Se、Te和Hg九种元素,这些元素在酸性介质中,在还原剂NaBH4作用下,前八种元素形成相应的挥发性氢化物GeH4、SnH4、PbH4、AsH3、SbH3、BiH3、H2Se和 H2Te,其反应为:+H3BO3 +NaCl+MHnNaBH4+3H2O +HCl+ Mn+ H2而汞盐则被还原为金属汞而挥发,用载气把反应后生成的气态氢化物或汞蒸发气引入ICP进行分析。该技术对以上九种元素的检出限可比气动雾化法降低1-2个数量级,已在卫检、环境及玩具检测、钢铁等领域得到很好的应用。N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集12# 只看作者回复于:2007-5-24 0:15:00回复本贴 回复主题 编辑 举报 管理 2. 5. 3固体进样 固体进样包括固体或粉末样品直接气化,然后将蒸气或固体气溶胶用载气引入等离子体,以及把固体或粉未样品直接送进或插进等离子体的方法。激光、控波火花、微电弧都可以成为固体或粉末样品气化的采样装置,并已有商品仪器出售,其采样气化原理与一般激光光源、火花和电弧光源并无什么不同。美国热电公司的SSEA固体进样技术(见下图)采用控波火花烧蚀气化技术,该技术具有火花直读光谱的快速、方便,又具有ICP光谱的宽线性范围,已成功地应用于冶金、机械等分析领域,特别是在铝及铝合金分析、贵金属杂质分析等方面更现特色。属于直接把固体和粉末送进或插进等离体的方法主要有双高频进样法、射流展开法和样品直接插入进样法等。双高频进样法是根据吹样法原理,采用高频放电产生的振动来驱动试样周围的空气。使200目的粉末试样变为尘雾飞扬起来,并被从漏斗边缘缝隙吹入的载气引入ICP中心通道,这种装置送样量可达到70%,由于进样量多,曝光时间短,检出限比电弧光源可降低1-2个数量级。射流展开法是采用类似水平电极电弧撒样法的振动送样器将14微米粒径的粉末样送入样品管,借助来自底部毛细管的约0.3升/分的载气流将试样吹进ICP中心通道,这种装置送样率可达100%,检出限也可改善。但这两种方法与吹样法和撒样法无本质区别,很难保证样品稳定、均匀引入等离子体,以及因样品颗粒及状态不同影响试样的蒸发。对于样品直接进样法是将1-20毫克的粉末样品置于石墨电极小孔中,然后直接插入ICP放电中心通道,这种方法对于易挥发元素,例如Na、Cu、Zn、Ga、In、Tl、Pb、As、Bi等检出限可优于碳电极小孔直流电弧法。从上面可以看出,固体进样技术仍是ICP光谱分析的一个重要难题,特别是粉末进样法,至今仍是一个不成熟的技术。2. 6 ICP光源的重要工作参数13)RF功率:几乎所有的谱线强度都随功率的增加而增加。但功率过大也会带来背景辐射增强,信背比变差,检出限反而不能降低。对于水溶液样品,一般选用的功率为950w-1350w,对于溶液中含有机试剂或有机溶剂的样品,为使有机物充分分解,一般选用1350w-1550w的功率。在测定易激发又易电离的碱金属元素时,可选用更低的功率(750w-950w),而在测定较难激发的As、Sb、Bi等元素时,可选用1350w的功率。14)雾化气流量(压力):雾化气的作用已如上述,其大小直接影响雾化器提升量、雾化效率、雾滴粒烃、气溶胶在通道中的停留时间等。因此要根据每个具体的雾化器精心选择并在分析过程中保持一致。对于目前广泛使用的Menhard和GE同心型雾化器,雾化压力通常在22-35psi间选择(最常用的是26-30psi),对于“较难”激发元素如As、Sb、Se、Cd等元素的测定可选用较小的雾化压力(24-26psi),使气溶胶在通道中停留较长的时间,更有利于激发发射,对于K、Na等易激发又易电离的元素的测定,可选用较高雾化压力(32-35psi),使气溶胶在通道中停留时间较短,且雾化得更好,以获得更低的检出限。15)41)观察高度:在炬管垂直放置的情况下,采用侧向采光,各种元素的最佳激发区因元素而异。具有较难激发的原子谱线的元素如As、Sb、Se等,它们的最佳激发区在ICP通道偏低的位置。而具有较易激发的离子谱线的元素如碱土族元素,周期表的第三、四副族元素,其最佳激发区则应在ICP通道偏高的位置。易激发又易电离的碱金属元素,在通道较低位置则绝大部分成为很难激发的离子状态。只有在通道的较高位置为最佳观察区域。所谓的观察离度是指工作线圈的顶部作为起点向上计算(如图所示)。而原子发射光谱分析的一个重大优势是多元素同时分析,因此曝光高度与其他参数一样,很难仅考虑个别元素的最佳观察高度,必须兼顾一次采样分析所有待测元素,所以一般采用折中的观察高度。在调试仪器时,一般以1ppm的Cd元素来选择最佳的观察高度(通常在15mm左右)。另可通过辅助气的改变可使观察高度在13-17mm间调整。42)频率:在一般情况下ICP的频率并不认为是重要的参数,目前常用的频率为27.12MHz与40.68MHz,这是为了避免与广播通讯相干涉而专门留给工业部门使用的频率,也比较适合于产生ICP,所以正规的ICP发生器都采用这个指定的频率。 2. 7 水平观察ICP光源水平观察ICP光源是采用水平放置ICP炬管,从ICP焰锥顶端采光,使整个通道各个部分的光都可通过狭缝,换言之即通道与光轴重合。水平观察ICP光源的好处是整个通道各个部分的光都可被采集,从而提高了各元素的灵敏度,降低了检出限,但水平观察的基体效应要比垂直观察大,且存在一定的易电离干扰的问题,同时由于炬管是水平放置,要包含整个等离子体,炬管易沾污,RF功率也不能太高(一般不超过1350w)。2. 8 双向观察ICP光源在水平观察ICP光源的基础,增加一套侧向采光光路,实现垂直/水平双向观察,如图所示,当切换反射镜M移开时,ICP为轴向采光,此时等同于水平观察ICP,当切换反射镜M切入时,挡住了轴向的光。ICP光源由侧向采光,经反镜M1、M2和切换反射镜通过狭缝,即为垂直观察。切换反射镜M由计算机控制,可实现全部元素谱线水平测量,全部元素垂直测寂静,部分元素谱线水平测量,部分元素谱线垂直测量的工作方式,双向观察能有效解决水平观察中存在的易电易干扰,进一步扩宽线性范围。N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集14# 只看作者回复于:2007-5-24 0:16:00回复本贴 回复主题 编辑 举报 管理 2. 9 RF发生器RF发生器通过工作线圈给等离子体输送能量,维持ICP光源稳定放电,目前ICP的RF发生器主要有两种震荡类型,即自激式和它激式。 2. 9.1 自激式RF发生器自激式RF发生器又称自由振式RF发生器,它有整流电源、振荡回路和电子管功率放大器三部分组成。整流电源是由三相电源经升压、三相全波整流及L、C滤波提供电子管功率放大器所需的直流高压(3千伏)。其振荡回路是由一个电容和一个电感组成的并联回路,当有外加电源时,回路内将产生振荡信号,回路能量交替地储存在电容和电感上。当回路中电阻很小时,即 R (L/C)1/2p2(L/C)1/2,其振荡频率为:f=1/2 。由于回路电阻的存在,每次振荡总要消耗部分能量,使振荡受到阻尼,为了维持等辐振荡,并保持一定的输出功率,使用电子管功率放大器,把L-C振荡回路的信号正反馈一部分供给放大器的栅极,经功放后再输出给L-C回路,这样L-C回路不断地从放大器取得能量,除反馈一部分外,大部分能量用电感耦合方式供给等离子体,从而维持稳定的等辐振荡和功率输出。信号正反馈的形式国外多采用电容反馈型,而国内生产的则多采用电感反馈型。自激式振荡器的主要特点是结构简单、价格低廉、制造调试比较容易,在技术指标上能基本满足光谱分析要求,但其主要的缺点是频率稳定性及功率稳定性较差,这主要是由于等离子体负载是作为振荡回路的一部分,负载的改变将影响L-C振荡器的频率及回路的工作状态。2. 9.2它激式RF发生器它激式RF发生器又称晶体控制型RF发生器,它与自激式不同,它是利用石英晶体的压电效应构成振荡器也取代L-C振荡回路的电容、电感元件。将石英晶体按一定方位角切制成一块正方形(或长方形或圆形)簿片,在晶片的两个对应表面上喷涂金属板,就可构成石英晶体振荡器。当晶体片上加上一个电场,就会使晶片发生机械形变,相反,在晶体片上加一个机械力又会在相应的方向上产生电场,这种现象称石英晶体的压电效应。若在晶片上下的金属板上施加变电压,就会产生相应的机械形变,即机械振动,通常情况下,这种形变振幅很小,当外加交变电压为某一特定频率时,振幅会突然啬,这种现象为压电谐振,这一频率称为晶体的谐振频率,它和晶体的尺寸有关。在它激式振荡器中,常应用一个频率为27.12MHz或40.68MHz的石英晶体振荡器作为振源,经过两级功率放大,就可得到27.12MHz或40.68MHz,2.0Kw的输出信号。通过匹配网络和同轴电缆传输到负载线圈上。这类发生器频率稳定度高,耦合效率好,功率输出易于自动控制,但放电回路的电学特性的任何微小变化,会导致阻抗失配,需调节至最佳匹配,仪器线路比较复杂,成本较高,但性能较好。ThermoElemental公司的的ICP均采用晶体控制型RF发生器,其结构框图如下:晶体控制型RF发生器的高功率输出采用多级放大后才获得,它包括:3)RF源放大:由石英晶体振荡器(27.12MHz)和放大电路组成,受来自AGC(自动增益控制)的反馈电压和计算机给定的控制,其输出是稳定的、最大功率为3w的高频信号。4)RF驱动放大:它介于源放大和功率放大之间,其作用是放大RF源放大级的高频信号,以驱动功率放大器,并隔绝源振荡器以改善稳定性,驱动放大级的最大输出功率为65w。5)10)RF功率放大:它主要由大功率电子管(3cx1500A)来实现高频信号的进一步放大,并通过工作线圈把RF功率耦合到等离子体上。功率放大级的最大输出功率可达2Kw。11)匹配网络:在以上各级放大器之间均存在阻抗匹配网络,是为RF功率在各级间传输中获得最高的效率。其中功率放大级的输入、输出匹配网络十分重要,输入匹配采用型匹配电路,如右图调整匹配电容Cl和C2,使输入功率放大级的反射功率几乎为零。输出匹配为自动匹配(Auto-Turning),自动跟踪等离子体负截的变化,使等离子体始终获得最高的功率传输效率。12)自动增益控制(AGC):它的作用是自动调整整个RF发生器的放大倍数,不管等离子体的阻抗以及等离子体与负载线圈耦合有何变化,始终保证等离子体的功率恒定不变。AGC同时又受计算机控制,以实现RF功率的计算机控制。13)工作线圈:工作线圈的作用是把RF发生器的高频能量,耦合到等离子体。由于高频电流倾向于在导体表面流动(即趋肤效应),工作线圈是由2.5圈镀银外层的空心铜管制成,内通冷却水冷却。为了防止其表面腐蚀或匝间高压放电,工作线圈外套一层四氟乙烯。14)电源系统(POWER UNIT):为RF发生器提供各种电源,包括:+5V、+12V、15V、+48V、+3800V和120V AC。 其中+48V提供给RF驱动放大, +3800V提供给RF功率放大。该电源系统具有各种保护,并通过其电源控制单元(Power Unit Control)实现与整个仪器的通讯和控制。2.9.3固态式RF发生器固态式RF发生器是用一组固态场效应管(一般是十几只配对)来替代经典RF发生器中的大功率电子管,以获得大功率高频能量输出。固态式RF发生器具有更小的体积,有利于仪器的小型化。N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集15# 只看作者回复于:2007-5-24 0:17:00回复本贴 回复主题 编辑 举报 管理 2. 10 ICP光谱分析的干扰ICP光源从本质说是由一个高温光源(包括RF发生器及炬管等)和一个高效雾化器系统所组成。从ICP问世到如今的大量实践证明,这种光源所进行的分析其所以具有较高精度和准确度,和光源中的干扰较小是分不开的。但是这并不是说它不存在干扰的问题。现就ICP光谱分析中出现的干扰问题分述如下。1物理因素的干扰由于ICP光谱分析的试样为溶液状态,因此溶液的粘度、比重及表面张力等均对雾化过程、雾滴粒径、气溶胶的传输以及溶剂的蒸发等都有影响,而粘度又与溶液的组成,酸的浓度和种类及温度等因素相关。溶液中含有机溶剂时,粘试与表面张力均会降低,雾化效率将有所提高,同时有机试剂大部分可燃,从而提高了尾焰的温度,结果使谱线强度有所提高,当溶液中含有有机溶剂时ICP的功率需适当提高,以抑制有机试剂中碳化物的分子光谱的强度。除有机溶剂外,酸的浓度和种类对溶液的物理性质也有明显的影响,在相同的酸度时,粘度以下列的次序递增HClHNO3HClO4H3PO4H2SO4。其中HCl和HNO3的粘度要按近些,且较小。而H3SO4 、H3PO4的粘度大且沸点高,因此在ICP光谱分析的样品处理中,尽可能用HCL和HNO3,而尽量避免用H3PO4和H2SO4。由上述所见,物理因素的干扰是存在而且应设法避免,其中最主要的办法是使标准试液与待测试样无论在基体元素的组成、总盐度、有机溶剂和酸的浓度等方面都保持完全一致。目前进样系统中采用蠕动泵进样对减轻上述物理干扰可起一定的作用,另外采用内标校正法也可适当地补偿物理干扰的影响。基体匹配或标准加入法能有效消除物理干扰,但工作量较大。2光谱干扰光谱干扰是ICP光谱分析中最令人头痛的问题,由于ICP的激发能力很强,几乎每一种存在于ICP中或引入ICP中的物质都会发射出相当丰富的谱线,从而产生大量的光谱“干扰”。光谱干扰主要分为两类,一类是谱线重叠干扰,它是由于光谱仪色散率和分辨率的不足,使某些共存元素的谱线重叠在分析上的干扰。另一类是背景干扰,这类干扰与基体成分及ICP光源本身所发射的强烈的杂散光的影响有关。对于谱线重叠干扰,采用高分辨率的分光系统,决不是意味着可以完全消除这类光谱干扰,只能认为当光谱干扰产生时,它们可以减轻至最小强度。因此,最常用的方法是选择另外一条干扰少的谱线作为分析线,或应用干扰因子校正法(IEC)以予校正。对于背景干扰,最有效的办法是利用现代仪器所具备的背景校正技术给予扣除。3化学干扰ICP光谱分析中的化学干扰,比起火焰原子吸收光谱或火焰原子发射光谱分析要轻微得多,因此化学干扰在ICP发射光谱分析中可以忽略不计。4电离干扰与基体效应干扰由于ICP中试样是在通道里进行蒸发、离解、电离和激发的,试样成分的变化对于高频趋肤效应的电学参数的影响很小,因而易电离元素的加入对离子线和原子线强度的影响比其他光源都要小,但实验表明这种易电离干扰效应仍对光谱分析有一定的影响。对于垂直观察ICP光源,适当地选择等离子体的参数,可使电离干扰抑制到最小的程度。但对于水平观察ICP光源,这种易电离干扰相对要严重一些,目前采用的双向观察技术,能比较有效地解决这种易电离干扰。此外,保持待测的样品溶液与分析标准溶液具有大致相同的组成也是十分必要。例如在岩矿分析中,常用碱溶法或偏硼酸里分解样品,给溶液带来大量的碱金属盐类。任何时候,两者在物理、化学各方面性质的匹配是避免包括电离干扰在内的各种干扰,使之不出现系统误差的重要保证。基体效应来源等离子体,对于任何分析线来说,这种效应与谱线激发电位有关,但由于ICP具有良好的检出能力,分析溶液可以适当稀释,使总盐量保持在1mg/ml左右,在此稀溶液中基体干扰往往是无足轻重的。当基体物质的浓度达到几mg/ml时,则不能对基体效应完全置之不顾。相对而言,水平观察ICP光源的基体效应要稍严重些。采用基体匹配、分离技术或标准加入法可消除或抑制基体效应。N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集16# 只看作者回复于:2007-5-24 0:18:00回复本贴 回复主题 编辑 举报 管理 各位今天不好意思 实在是太晚了 要睡觉了,明天继续上传N/A 技术 财富 个人资料 加为好友 给他留言 帖子合集17# 只看作者回复于:2007-5-24 0:19:00回复本贴 回复主题 编辑 举报 管理 3光谱仪的分光(色散)系统复合光经色散元素分光后,得到一条按波长顺序排列的光谱,能将复合光束分解为单色光,并进行观测记录的设备称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论