




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【大高考】2017版高考数学一轮总复习 第8章 立体几何初步 第二节 空间几何体的表面积与体积AB卷 文 新人教A版1.(2016新课标全国,4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12 B.C.8 D.4解析由题可知正方体的棱长为2,其体对角线2即为球的直径,所以球的表面积为4R2(2R)212,故选A.答案A2.(2016新课标全国,7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20 B.24C.28 D.32解析由三视图可知,组合体的底面圆的面积和周长均为4,圆锥的母线长l4,所以圆锥的侧面积为S锥侧448,圆柱的侧面积S柱侧4416,所以组合体的表面积S816428,故选C.答案C3.(2016新课标全国,10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.1836B.5418C.90D.81解析由题意知,几何体为平行六面体,边长分别为3,3,几何体的表面积S362332325418.答案B4.(2015新课标全国,11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为1620,则r()A.1 B.2C.4 D.8解析由题意知,2r2r2r2rr2r24r24r25r21620,r2.答案B5.(2015新课标全国,10)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点.若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36 B.64C.144 D.256解析如图,要使三棱锥OABC即COAB的体积最大,当且仅当点C到平面OAB的距离,即三棱锥COAB底面OAB上的高最大,其最大值为球O的半径R,则VOABC最大VCOAB最大SOABRR2RR336,所以R6,得S球O4R2462144.选C.答案C6.(2013新课标全国,15)已知H是球O的直径AB上一点,AHHB12,AB平面,H为垂足,截球O所得截面的面积为,则球O的表面积为_.解析平面截球O所得截面为圆面,圆心为H,设球O的半径为R,则由AHHB12得OHR,由圆H的面积为,得圆H的半径为1,所以()212R2,得出R2,所以球O的表面积S4R24.答案7.(2013新课标全国,15)已知正四棱锥OABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为_.解析如图所示,在正四棱锥OABCD中,VOABCDS正方形ABCD|OO1|()2|OO1|,|OO1|,|AO1|,在RtOO1A中,OA,即R,S球4R224.答案248.(2016新课标全国,11)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球,若ABBC,AB6,BC8,AA13,则V的最大值是()A.4 B.C.6 D.解析由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V的最大值为.答案B9.(2016新课标全国,7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是()A.17B.18C.20 D.28解析由题知,该几何体的直观图如图所示,它是一个球(被过球心O且互相垂直的三个平面)切掉左上角的后得到的组合体,其表面积是球面面积的和三个圆面积之和,易得球的半径为2,则得S42232217,故选A.答案A10.(2015新课标全国,6)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有() A.14斛 B.22斛C.36斛 D.66斛解析由题意知:米堆的底面半径为(尺),体积VR2h(立方尺).所以堆放的米大约为22(斛).答案B11.(2015新课标全国,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A.B.C. D.解析如图,由题意知,该几何体是正方体ABCDA1B1C1D1被过三点A、B1、D1的平面所截剩余部分,截去的部分为三棱锥AA1B1D1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为.选D.答案D12.(2014新课标全国,7)正三棱柱ABCA1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥AB1DC1的体积为() A.3 B.C.1 D.解析由题意可知ADBC,由面面垂直的性质定理可得AD平面DB1C1,又AD2sin 60,所以VAB1DC1ADSB1DC121,故选C.答案C13.(2013新课标全国,11)某几何体的三视图如图所示,则该几何体的体积为()A.168 B.88C.1616 D.816解析由三视图分析可知,几何体由底面半径为2,高为4的半圆柱和长、宽、高分别为2,4,2的长方体组合而成,V44242168,由三视图准确得出几何体的形状是解题的关键.答案A14.(2015新课标全国,19)如图,长方体ABCDA1B1C1D1中AB16,BC10,AA18,点E,F分别在A1B1,D1C1上,A1ED1F4.过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面把该长方体分成的两部分体积的比值.解(1)交线围成的正方形EHGF如图:(2)作EMAB,垂足为M,则AMA1E4,EB112,EMAA18.因为EHGF为正方形,所以EHEFBC10.于是MH6,AH10,HB6.因为长方体被平面分成两个高为10的直棱柱,所以其体积的比值为(也正确).1.(2015安徽,9)一个四面体的三视图如图所示,则该四面体的表面积是()A.1 B.12C.2 D.2解析由几何体的三视图可知空间几何体的直观图如图所示.其表面积S表2212()22,故选C.答案C2.(2014陕西,5)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4 B.3C.2 D.解析由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S2rh2112.答案C3.(2014山东,13)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_.解析由题意可知,该六棱锥是正六棱锥,设该六棱锥的高为h,则622h2,解得h1,底面正六边形的中心到其边的距离为,故侧面等腰三角形底边上的高为2,故该六棱锥的侧面积为12212.答案124.(2016山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.B.C.D.1解析由三视图知,半球的半径R,四棱锥为底面边长为1,高为1的正四棱锥,V111,故选C.答案C5.(2015山东,9)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B.C.2 D.4解析如图,设等腰直角三角形为ABC,C90,ACCB2,则AB2.设D为AB中点,则BDADCD.所围成的几何体为两个圆锥的组合体,其体积V2()2.答案B6.(2015湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件的利用率为(材料利用率新工件的体积/原工件的体积)()A. B.C. D.解析欲使正方体最大,则其上底面四个顶点需在圆锥上.圆锥体积V1122.作几何体截面图,则内接正方体棱长a.正方体体积V2a3,.故选A.答案A7.(2014重庆,7)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.30解析此几何体是由一个三棱柱截去一个三棱锥得到的,三棱柱和三棱锥的底面都是直角三角形,两直角边长分别为3和4,其面积为6,三棱柱的高为5,三棱锥的高为3,所以该几何体的体积为656324,选择C.答案C8.(2016浙江,9)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是_cm2,体积是_cm3.解析由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm,下面长方体是底面边长为4 cm,高为2 cm,其直观图如右图:其表面积S62224242422280(cm2).体积V22244240(cm3).答案80409.(2016四川,12)已知某三棱锥的三视图如图所示,则该三棱锥的体积是_.解析由三视图可大致画出三棱锥的直观图如图,由正、俯视图可知,ABC为等腰三角形,且AC2,AC边上的高为1,SABC21.由侧视图可知:三棱锥的高h1,VSABCSABCh.答案10.(2016北京,11)某四棱柱的三视图如图所示,则该四棱柱的体积为_.解析由三视图知该四棱柱为直四棱柱,底面积S,高h1,所以四棱柱体积VSh1.答案11.(2015四川,14)在三棱柱ABCA1B1C1中,BAC90,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是_.解析由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,VPA1MNVA1PMN,又AA1平面PMN,VA1PMNVAPMN,VAPMN1,故VPA1MN.答案12.(2015湖南,18)如图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45,求三棱锥FAEC的体积.(1)证明ABC为正三角形,E为BC中点,AEBC,又B1B平面ABC,AE平面ABC,B1BAE,由B1BBCB知,AE平面B1BCC1,又由AE平面AEF,平面AEF平面B1BCC1.(2)解设AB中点为M,连接CM,则CMAB,由平面A1ABB1平面ABC且平面A1ABB1平面ABCAB知,CM面A1ABB1,CA1M即为直线A1C与平面A1ABB1所成的角.CA1M45,易知CM2,在等腰RtCMA中,AMCM,在RtA1AM中,A1A.FCA1A,又SAEC4,V三棱锥FAEC.13.(2014广东,18)如图1,四边形ABCD为矩形,PD平面ABCD,AB1,BCPC2.作如图2折叠:折痕EFDC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MFCF.(1)证明:CF平面MDF;(2)求三棱锥MCDE的体积.(1)证明PD平面ABCD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年消防安全及防火安全知识竞赛试题(附含答案)
- 2025年家庭教育(家长教育及培养孩子)科学知识试题与答案
- 2025中小学教职工请销假制度(模板)
- 2025年十八项医疗核心制度考试试题库及参考答案
- 辽宁省沈阳市康平县2024-2025学年八年级下学期期末语文试题(解析版)
- 小学技术考试试题及答案
- 2025培训中心合作协议模板
- 2025授权代理协议书全新版
- 2025劳动合同解除证明书电子版
- 搬运作业培训课件
- 人员出差审批管理制度
- 呼吸科一科一品
- CJ/T 526-2018软土固化剂
- 2026版步步高大一轮数学江苏基础第二章§2.4函数的周期性和对称性(含答案或解析)
- 眼外伤急救处理
- 2025年广西公需科目答案01
- 2025年版!药食同源物质目录(106种)
- 2025年证券投资顾问专业考试新版真题试卷(附答案)
- 国家数据局《2024年“数据要素×”项目案例集》
- 2025年高端眼科设备报告-国产有望全面崛起市场格局重构中-动脉智库
- 矿山收购居间人合同协议
评论
0/150
提交评论