高考二轮复习文科数学专题七3第三讲推理与证明.ppt_第1页
高考二轮复习文科数学专题七3第三讲推理与证明.ppt_第2页
高考二轮复习文科数学专题七3第三讲推理与证明.ppt_第3页
高考二轮复习文科数学专题七3第三讲推理与证明.ppt_第4页
高考二轮复习文科数学专题七3第三讲推理与证明.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题七 概率与统计、推理与证明、算法初步、框图、复数,第三讲 推理与证明,考点整合,合情推理问题,考纲点击,了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发展中的作用。,基础梳理,一、合情推理 1归纳推理 (1)归纳推理是由某类事物的_具有某些特征,推出该类事物的_具有这些特征的推理,或者由个别事实概括出_的推理 (2)归纳推理的思维过程如下: 2类比推理 (1)类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理 (2)类比推理的思维过程如下:,答案:1.(1)部分对象 全部对象 一般结论,整合训练,1(1)对于平面几何中的命题:“夹在两条平行直线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“_”,这个类比命题的真假性是_ (2)(2010年福建卷)对于平面上的点集,如果连接中任意两点的线段必定包含于,则称为平面上的凸集,给出平面上4个点集的图形如下(阴影区域及其边界): 其中为凸集的是_(写出所有凸集相应图形的序号),答案: (1)夹在两个平行平面之间的平行线段相等 真命题 (2),考纲点击,演绎推理问题,1了解演绎推理的重要性,掌握演绎推理的基本形式,并能运用它们进行一些简单推理 2了解合情推理和演绎推理之间的联系和差异,基础梳理,二、演绎推理 1“三段论”是演绎推理的一般模式,包括: (1)大前提已知的一般性原理 (2)小前提所研究的特殊情况 (3)结论根据一般原理,对特殊情况做出的判断 2合情推理与演绎推理的区别 归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确,整合训练,2有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b平面,则直线b直线a,的结论显然是错误的,这是因为( ) a大前提错误 b小前提错误 c推理形式错误 d非以上错误,答案:a,考纲点击,直接证明问题,了解直接证明和两种方法分析法和综合法;了解分析法和综合法的思考过程、特点,基础梳理,三、直接证明 1综合法 用p表示已知条件、已有的定义、定理、公理等,q表示所要证明的结论,则综合法可用框图表示为: 2分析法 用q表示要证明的结论,则分析法可用框图表示为:,整合训练,3(2010年湖北卷)记实数x1,x2,xn中的最大数为maxx1,x2,xn最小数为minx1,x2,xn已知abc的三边边长为a、b、c(abc),定义它的倾斜度为l 则“l1”是“abc为等边三解形”的( ) a充分而不必要的条件 b必要而不充分的条件 c充要条件 d既不充分也不必要的条件,答案:b,考纲点击,间接证明问题,1了解间接证明的一种基本方法反证法 2了解反证法的思考过程、特点,基础梳理,四、间接证明 反证法的证明过程可以概括为“否定推理否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程用反证法证明命题“若p则q”的过程可以用如下图所示的框图表示,整合训练,4. 用反证法证“至多有两个解”,应假设( ) a有一个解 b有两个解 c至少有三个解 d至少有两个解,答案:c,高分突破,合情推理,观察下列等式:,可以推测,当k2(kn*)时,,思路点拨:当k2、3、4、5、6时,写出ak1,ak2的值,通过观察归纳可得,跟踪训练,1我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值 类比上述结论,在边长为a的正四面体内任一点到其四个面的距离之和为定值( ),答案:a,演绎推理,已知数列an中,a11,a22,且an1(1q)anqan1(n2,q0) (1)设bnan1an(nn*),证明bn是等比数列; (2)求数列an的通项公式; (3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的nn*,an是an3与an6的等差中项,思路点拨:解答本题第(1)问可根据bnan1an(nn*)将已知等式变形构造出bn与bn1的关系式第(2)问可用叠加法求an,第(3)问先由a3是a6与a9的等差中项求出q,并利用an的通项公式和q的值,推证anan3an6an(nn*),解析:(1)证明:由题设an1(1q)an qan-1(n2), 得an1anq(anan1), 即bnqbn1(n2) 又b1a2a11,q0,所以bn是首项为1,公比为q的等比数列 (2)由(1), a2a11, a3a2q, anan1qn2(n2) 将以上各式相加,得ana11qqn2(n2),,由可得anan3an6an,nn*, 所以对任意的nn*, an是an3与an6的等差中项,跟踪训练,2在数列an中a12,an14an3n1,nn*. (1)证明数列ann是等比数列; (2)求数列an的前n项和sn; (3)证明不等式sn14sn,对任意nn*皆成立,解析:(1)由题设an14an3n1,得 an1(n1)4(ann),nn*. 又a111,所以数列ann是首项为1,且公比为4的等比数列 (2)由(1)可知ann4n1,于是数列an的通项公式为an4n1n. 所以数列an的前n项和,(3)对任意的nn*, 所以不等式sn14sn,对任意nn*皆成立,直接证明与间接证明,已知数列an和bn满足:a1,an1 ann4,bn(1)n(an3n21),其中为实数,n为正整数 (1)对任意实数,证明数列an不是等比数列; (2)试判断数列bn是否为等比数列,并证明你的结论,又b1(18),所以 当18时,bn0(nn*),此时bn不是等比数列; 当18时,b1(18)0,由bn1 bn, 可知bn0,所以 (nn*) 故当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论