2012年中考数学总复习重点知识专题讲解(共十讲).doc_第1页
2012年中考数学总复习重点知识专题讲解(共十讲).doc_第2页
2012年中考数学总复习重点知识专题讲解(共十讲).doc_第3页
2012年中考数学总复习重点知识专题讲解(共十讲).doc_第4页
2012年中考数学总复习重点知识专题讲解(共十讲).doc_第5页
已阅读5页,还剩117页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012年中考数学总复习重点知识专题讲解2012年中考数学总复习重点知识专题讲解第一讲 线段、角的计算与证明问题【知识点诠释】 中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中,难题了。大家研究今年的北京一模就会发现,第二部分,或者叫难度开始提上来的部分,基本上都是以线段,角的计算与证明开始的。城乡18个区县的一模题中,有11个区第二部分第一道题都是标准的梯形,四边形中线段角的计算证明题。剩下的7个区县题则将线段角问题与旋转,动态问题结合,放在了更有难度的倒数第二道乃至压轴题当中。可以说,线段角问题就是中考数学有难度题的排头兵。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。在这个专题中,我们对各区县一模真题进行总结归纳,分析研究,来探究线段,角计算证明问题的解题思路。第一部分 真题精讲【例1】如图,梯形中,求的长 【思路分析】线段,角的计算证明基本都是放在梯形中,利用三角形全等相似,直角三角形性质以及勾股定理等知识点进行考察的。所以这就要求我们对梯形的性质有很好的理解,并且熟知梯形的辅助线做法。这道题中未知的是AB,已知的是AD,BC以及BDC是等腰直角三角形,所以要把未知的AB也放在已知条件当中去考察.做AE,DF垂直于BC,则很轻易发现我们将AB带入到了一个有大量已知条件的直角三角形当中.于是有解如下.【解析】作于于 ,四边形是矩形 是的边上的中线 在中,【例2】(2010,海淀,一模)已知:如图,在直角梯形中,于点O,求的长. 【思路分析】 这道题给出了梯形两对角线的关系.求梯形上底.对于这种对角线之间或者和其他线段角有特殊关系(例如对角线平分某角)的题,一般思路是将对角线提出来构造一个三角形.对于此题来说,直接将AC向右平移,构造一个以D为直角顶点的直角三角形.这样就将AD转化成了直角三角形中斜边被高分成的两条线段之一,而另一条线段BC是已知的.于是问题迎刃而解.【解析】过点作交的延长线于点. . 于点, . . , 四边形为平行四边形. . , . , . 此题还有许多别的解法,例如直接利用直角三角形的两个锐角互余关系,证明ACD和 DBC相似,从而利用比例关系直接求出CD。有兴趣的考生可以多发散思维去研究。【例3】(2010,东城,一模)如图,在梯形中,为中点,求的长度【思路分析】 这道题是东城的解答题第二部分第一道,就是我们所谓提难度的门槛题。乍看之下好象直接过D做垂线之类的方法不行.那该怎样做辅助线呢?答案就隐藏在E是中点这个条件中.在梯形中,一腰中点是很特殊的.一方面中点本身是多对全等三角形的公共点,另一方面中点和其他底,腰的中点连线就是一些三角形的中线,利用中点的比例关系就可以将已知条件代入.比如这道题,过中点E做BC的垂线,那么这条垂线与AD延长线,BC就构成了两个全等的直角三角形.并且这两个直角三角形的一个锐角的正切值是已经给出的.于是得解.【解析】过点作的垂线交于点,交的延长线于点. 在梯形中,是的中点,在和中, . ,.在中,.在中,【总结】 以上三道真题,都是在梯形中求线段长度的问题.这些问题一般都是要靠做出精妙的辅助线来解决.辅助线的总体思路就是将梯形拆分或者填充成矩形+三角形的组合,从而达到利用已知求未知的目的.一般来说,梯形的辅助线主要有以下5类:过一底的两端做另一底的垂线,拆梯形为两直角三角形+ 一矩形平移一腰,分梯形为平行四边形+ 三角形延长梯形两腰交于一点构造三角形平移对角线,转化为平行四边形+三角形连接顶点与中点延长线交于另一底延长线构筑两个全等三角形或者过中点做底边垂线构筑两个全等的直角三角形以上五种方法就是梯形内线段问题的一般辅助线做法。对于角度问题,其实思路也是一样的。通过做辅助线使得已知角度通过平行,全等方式转移到未知量附近。之前三道例题主要是和线段有关的计算。我们接下来看看和角度有关的计算与证明问题。【例4】 (2010,延庆,一模)如图,在梯形中,平分,过点作,交的延长线于点,且,求的长【思路分析】 此题相对比较简单,不需要做辅助线就可以得出结果。但是题目中给的条件都是此类角度问题的基本条件。例如对角线平分某角,然后有角度之间的关系。面对这种题目还是需要将已知的角度关系理顺。首先根据题目中条件,尤其是利用平行线这一条件,可以得出(见下图)角C与角1,2,3以及角E的关系。于是一系列转化过后,发现角C=60度,即三角形DBC为RT三角形。于是得解。【解析】: , 梯形是等腰梯形 , 在中, , 【例5】(2009,西城,一模)已知:,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.如图,当APB=45时,求AB及PD的长;【思路分析】这是去年西城一模的压轴题的第一小问。如果线段角的计算出现在中间部分,往往意味着难度并不会太高。但是一旦出现在压轴题,那么有的时候往往比函数题,方程题更为棘手。这题求AB比较容易,过A做BP垂线,利用等腰直角三角形的性质,将APB分成两个有很多已知量的RT。但是求PD时候就很麻烦了。PD所在的三角形PAD是个钝角三角形,所以就需要我们将PD放在一个直角三角形中试试看。构筑包含PD的直角三角形,最简单的就是过P做DA延长线的垂线交DA于F,DF交PB于G。这样一来,得到了PFA AGE等多个RT。于是与已求出的AB等量产生了关系,得解。【解析】:如图,作AEPB于点E APE中,APE=45, , , 在RtABE中,AEB=90, 如图,过点P作AB的平行线,与DA的延长线交于F,设DA的延长线交PB于G在RtAEG中,可得,(这一步最难想到,利用直角三角形斜边高分成的两个小直角三角形的角度关系),在RtPFG中,可得,【总结】 由此我们可以看出,在涉及到角度的计算证明问题时,一般情况下都是要将已知角度通过平行,垂直等关系过度给未知角度。所以,构建辅助线一般也是从这个思路出发,利用一些特殊图形中的特殊角关系(例如上题中的直角三角形斜边高分三角形的角度关系)以及借助特殊角的三角函数来达到求解的目的。第二部分 发散思考通过以上的一模真题,我们对线段角的相关问题解题思路有了一些认识。接下来我们自己动手做一些题目。希望考生先做题,没有思路了看分析,再没思路了再看答案。【思考1】如图,在梯形ABCD中,ADBC,若ACBD,CBDAAD+BC=, 且, 求CD的长【思路分析】 前面我已经分析过,梯形问题无非也就那么几种辅助线的做法。此题求腰,所以自然是先将腰放在某个RT三角形中。另外遇到对角线垂直这类问题,一般都是平移某一条对角线以构造更大的一个RT三角形,所以此题需要两条辅助线。在这类问题中,辅助线的方式往往需要交叉运用,如果思想放不开,不敢多做,巧做,就不容易得出答案。解法见后文【思考2】如图,梯形ABCD中,AD/BC,B=30,C=60,E,M,F,N分别是AB,BC,CD,DA的中点,已知BC=7,MN=3,求EF【思路分析】此题有一定难度,要求考生不仅掌握中位线的相关计算方法,也对三点共线提出了要求。若求EF,因为BC已知,所以只需求出AD即可。由题目所给角B,角C的度数,应该自然联想到直角三角形中求解。(解法见后)ABFECD【思考3】已知,延长到,使取的中点,连结交于点 求的值; 若,求的长【思路分析】 求比例关系,一般都是要利用相似三角形来求解。此题中有一个等量关系BC=CD,又有F中点,所以需要做辅助线,利用这些已知关系来构造数个相似三角形就成了获得比例的关键。(解法见后)【思考4】如图3,ABC中,A=90,D为斜边BC的中点,E,F分别为AB,AC上的点,且DEDF,若BE=3,CF=4,试求EF的长【思路分析】 中点问题是中考几何中的大热点,几乎年年考。有中点自然有中线,而倍长中线方法也成为解题的关键。将三角形的中线延长一倍,刚好可以构造出两个全等三角形,很多问题就可以轻松求解。本题中,D为中点,所以大家可以看看如何在这个里面构造倍长中线。(解法见后)【思考5】 如图,在四边形中,为上一点,和都是等边三角形,、的中点分别为、,试判断四边形为怎样的四边形,并证明你的结论【思路分析】此题也是中点题,不同的是上题考察中线,此题考察中位线。本题需要考生对各个特殊四边形的性质了如指掌,判定,证明上都需要很好的感觉。尤其注意梯形,菱形,正方形,矩形等之间的转化条件。(解法见后)第三部分 思考题答案思考1【解析】:作DEBC于E,过D作DFAC交BC延长线于F 则四边形ADFC是平行四边形,DF=AC 四边形ABCD是等腰梯形,AC=BD 又ACBD,DFAC,BDDFBDF是等腰直角三角形在中, , ADCFEEMBNH思考2【解析】:延长BA,CD交于点H,连接HN,因为B=30,C=60,所以BHC=90所以HN=DN(直角三角形斜边中线性质)NHD=NDH=60连接MH,同理可知MHD=C=60。所以NHD=MHD,即H,N,M三点共线(这一点容易被遗漏,很多考生会想当然认为他们共线,其实还是要证明一下)所以HM=3.5 ,NH=0.5 AN=0.5所以AD=1 EF=(1+7)/2=4思考3【解析】 过点作,交于点ABFECDM为的中点为的中点,由,得, ,又,思考4【解析】:延长ED至点G,使DG=ED,连接CG,FG则CDGBDE所以CG=BE=3,2=B因为B+1=90,所以1+2=FCG=90因为DF垂直平分EG,所以FG=EFAGB DFE1 C2图3在RtFCG中,由勾股定理得,所以EF=5思考5【解析】:证明:如图,连结、为的中位线,同理,四边形为平行四边形(有些同学做到这一步就停了,没有继续发现三角形全等这一特点,从而漏掉了菱形的情况,十分可惜)在和中,即四边形为菱形2012年中考数学总复习重点知识专题讲解第二讲 图形位置关系【知识点诠释】 在中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。综合整个2010一模来看,18套题中有17套都是很明确的采用圆与三角形问题的一证一算方式来考察。这个信息告诉我们中考中这一类题几乎必考。由于此类题目基本都是上档次解答题的第二道,紧随线段角计算之后,难度一般中等偏上。所以如何将此题分数尽揽怀中就成为了每个考生与家长不得不重视的问题。从题目本身来看,一般都是采取很标准的两问式.第一问证明切线,考察切线判定定理以及切线性质定理及推论,第二问通常会给定一线段长度和一角的三角函数值,求其他线段长,综合考察圆与三角形的知识点。一模尚且如此,中考也不会差的太远。至于其他图形位置关系,我们将会在后面的专题中涉及到.所以本讲笔者将从一模真题出发,总结关于圆的问题的一般思路与解法。第一部分 真题精讲【例1】(2010,丰台,一模)已知:如图,AB为O的直径,O过AC的中点D,DEBC于点E(1)求证:DE为O的切线;(2)若DE=2,tanC=,求O的直径【思路分析】 本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证ODDE。至于第二问则重点考察直径所对圆周角是90这一知识点。利用垂直平分关系得出ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。【解析】(1)证明:联结OD D为AC中点, O为AB中点, OD为ABC的中位线 ODBC DEBC, DEC=90.ODE=DEC=90. ODDE于点D. DE为O的切线 (2)解:联结DB AB为O的直径,ADB=90 DBAC CDB=90. D为AC中点, AB=AC在RtDEC中,DE=2 ,tanC=, EC=. (三角函数的意义要记牢) 由勾股定理得:DC=.在RtDCB 中, BD=由勾股定理得: BC=5.AB=BC=5. O的直径为5. 【例2】(2010,海淀,一模)已知:如图,为的外接圆,为的直径,作射线,使得平分,过点作于点.(1)求证:为的切线;(2)若,求的半径. 【思路分析】本题是一道典型的用角来证切线的题目。题目中除垂直关系给定以外,就只给了一条BA平分CBF。看到这种条件,就需要大家意识到应该通过角度来证平行。用角度来证平行无外乎也就内错角同位角相等,同旁内角互补这么几种。本题中,连OA之后发现ABD=ABC,而OAB构成一个等腰三角形从而ABO=BAO,自然想到传递这几个角之间的关系,从而得证。第二问依然是要用角的传递,将已知角BAD通过等量关系放在ABC中,从而达到计算直径或半径的目的。【解析】证明:连接. , . , . . . (得分点,一定不能忘记用内错角相等来证平行) , . . 是O半径, 为O的切线. (2) ,, .由勾股定理,得. .(通过三角函数的转换来扩大已知条件) 是O直径, . .又 , , . (这一步也可以用三角形相似直接推出BD/AB=AB/AC=sinBAD)在Rt中,=5. 的半径为. 【例3】(2010,昌平,一模)已知:如图,点是的直径延长线上一点,点 在上,且(1)求证:是的切线;(2)若点是劣弧上一点,与相交 于点,且,求的半径长.【思路分析】 此题条件中有OA=AB=OD,聪明的同学瞬间就能看出来BA其实就是三角形OBD中斜边OD上的中线。那么根据直角三角形斜边中线等于斜边一半这一定理的逆定理,马上可以反推出OBD=90,于是切线问题迎刃而解。事实上如果看不出来,那么连接OB以后像例2那样用角度传递也是可以做的。本题第二问则稍有难度,额外考察了有关圆周角的若干性质。利用圆周角相等去证明三角形相似,从而将未知条件用比例关系与已知条件联系起来。近年来中考范围压缩,圆幂定理等纲外内容已经基本不做要求,所以更多的都是利用相似三角形中借助比例来计算,希望大家认真掌握。【解析】(1)证明:连接.,.是等边三角形.,. . . (不用斜边中线逆定理的话就这样解,麻烦一点而已)又点在上,是的切线 . (2)解:是的直径, . 在中, , 设则, . . (设元的思想很重要), . ., .5分【例4】(2010,密云,一模)如图,等腰三角形中,以为直径作交于点,交于点,垂足为,交的延长线于点(1)求证:直线是的切线;(2)求的值【思路分析】本题和前面略有不同的地方就是通过线段的具体长度来计算和证明。欲证EF是切线,则需证OD垂直于EF,但是本题中并未给OD和其他线角之间的关系,所以就需要多做一条辅助线连接CD,利用直径的圆周角是90,并且ABC是以AC,CB为腰的等腰三角形,从而得出D是中点。成功转化为前面的中点问题,继而求解。第二问利用第一问的结果,转移已知角度,借助勾股定理,在相似的RT三角形当中构造代数关系,通过解方程的形式求解,也考察了考生对于解三角形的功夫。【解析】(1)证明:如图,连结,则 , 是的中点是的中点,于F是的切线 ( 2 ) 连结,是直径, (直径的圆周角都是90)设,则在中,在中,(这一步至关重要,利用两相邻RT的临边构建等式,事实上也可以直接用直角三角形斜边高分比例的方法)解得即在中 【例5】2010,通州,一模如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.(1)若ED与A相切,试判断GD与A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GCCD5,求AD的长.【思路分析】本题虽然是圆和平行四边形的位置关系问题,但是依然考察的是如何将所有条件放在最基本的三角形中求解的能力。判断出DG与圆相切不难,难点在于如何证明。事实上,除本题以外,门头沟,石景山和宣武都考察了圆外一点引两条切线的证明。这类题目最重要是利用圆半径相等以及两个圆心角相等来证明三角形相似。第二问则不难,重点在于如何利用角度的倍分关系来判断直角三角形中的特殊角度,从而求解。【解析】(1)结论:与相切证明:连接点、在圆上,四边形是平行四边形, (做多了就会发现,基本此类问题都是要找这一对角,所以考生要善于把握已知条件往这个上面引)在和 与相切与相切 (2),四边形是平行四边形, (很多同学觉得题中没有给出特殊角度,于是无从下手,其实用倍分关系放在RT三角形中就产生了30和60的特殊角) . 【总结】 经过以上五道一模真题,我们可以得出这类题型的一般解题思路。要证相切,做辅助线连接圆心与切点自不必说,接下来就要考虑如何将半径证明为是圆心到切线的距离,即“连半径,证垂直”。近年来中考基本只要求了这一种证明切线的思路,但是事实上证明切线有三种方式。为以防遇到,还是希望考生能有所了解。第一种就是课本上所讲的先连半径,再证垂直。这样的前提是题目中所给条件已经暗含了半径在其中。例如圆外接三角形,或者圆与线段交点这样的。把握好各种圆的性质关系就可以了。第二种是在题目没有给出交点状况的情况下,不能贸然连接,于是可以先做垂线,然后通过证明垂线等于半径即可,就是所谓的“先证垂直后证半径”。例如大家看这样一道题, 如图ABC中,AB=AC,点O是BC的中点,与AB切于点D,求证:与AC也相切。该题中圆0与AC是否有公共点是未知的,所以只能通过O做AC的垂线,然后证明这个距离刚好就是圆半径。如果考生想当然认为有一个交点,然后直接连AC与圆交点这样证明,就误入歧途了。第三种是比较棘手的一种,一方面题目中并未给出半径,也未给出垂直关系,所以属于半径和垂直都要证明的题型。例如看下面一道题:如图,中,AB=AC,=,O、D将BC三等分,以OB为圆心画,求证:与AC相切。本题中并未说明一定过A点,所以需要证明A是切点,同时还要证明O到AC垂线的垂足和A是重合的,这样一来就非常麻烦。但是换个角度想,如果连接AO之后再证明AO=OB,AOAC,那么就非常严密了。(提示:做垂线,那么垂足同时也是中点,通过数量关系将AO,BO都用AB表示出来即可证明相等,而AOC中利用直角三角形斜边中线长是斜边一半的逆定理可以证出直角。) 至于本类题型中第二问的计算就比较简单了,把握好圆周角,圆心角,以及可能出现的弦切角所构成的线段,角关系,同时将条件放在同一个RT当中就可以非常方便的求解。总之,此类题目难度不会太大,所以需要大家做题速度快,准确率高,为后面的代几综合体留出空间。第二部分 发散思考【思考1】(2009,海淀,一模)如图,已知AB为O的弦,C为O上一点,C=BAD,且BDAB于B. (1)求证:AD是O的切线;(2)若O的半径为3,AB=4,求AD的长.【思路分析】此题为去年海淀一模题,虽然较为简单,但是统计下来得分率却很低. 因为题目中没有给出有关圆心的任何线段,所以就需要考生自己去构造。同一段弧的圆周角相等这一性质是非常重要的,延长DB就会得到一个和C一样的圆周角,利用角度关系,就很容易证明了。第二问考解三角形的计算问题,利用相等的角建立相等的比例关系,从而求解。(解法见后)【思考2】2009,西城,一模已知:如图,AB为O的弦,过点O作AB的平行线,交 O于点C,直线OC上一点D满足D=ACB.(1)判断直线BD与O的位置关系,并证明你的结论;(2)若O的半径等于4,求CD的长.【思路分析】本题也是非常典型的通过角度变换来证明90的题目。重点在于如何利用D=ACB这个条件,去将他们放在RT三角形中找出相等,互余等关系。尤其是将OBD拆分成两个角去证明和为90。(解法见后)【思考3】2009,北京已知:如图,在ABC中,AB=AC,AE是角平分线,BM平分ABC交AE于点M,经过B,M两点的O交BC于点G,交AB于点F,FB恰为O的直径.(1)求证:AE与O相切;(2)当BC=4,cosC=时,求O的半径. 【思路分析】这是一道去年北京中考的原题,有些同学可能已经做过了。主要考点还是切线判定,等腰三角形性质以及解直角三角形,也不会很难。放这里的原因是让大家感受一下中考题也无非就是如此出法,和我们前面看到的那些题是一个意思。【思考4】2009,西城,二模如图,等腰ABC中,AC=BC,O为ABC的外接圆,D为上一点, CEAD于E. 求证:AE= BD +DE【思路分析】 前面的题目大多是有关切线问题,但是未必所有的圆问题都和切线有关,去年西城区这道模拟题就是无切线问题的代表。此题的关键在于如何在图形中找到和BD相等的量来达到转化的目的。如果图形中所有线段现成的没有,那么就需要自己去截一段,然后去找相似或者全等三角形中的线段关系。【思考5】.2009,东城,二模 如图,已知O是ABC的外接圆,AB是O的直径,D是AB延长线的一点,AECD交DC的延长线于E,CFAB于F,且CECF(1) 求证:DE是O的切线;(2) 若AB6,BD3,求AE和BC的长【思路分析】又是一道非常典型的用角证平行的题目。题目中虽未给出AC评分角EAD这样的条件,但是通过给定CE=CF,加上有一个公共边,那么很容易发现EAC和CAF是全等的。于是问题迎刃而解。第二问中依然要注意找到已知线段的等量线段,并且利用和,差等关系去转化。第三部分 思考题解析【思考1解析】1)证明: 如图, 连接AO并延长交O于点E, 连接BE, 则ABE=90. EAB+E=90. E =C, C=BAD, EAB+BAD =90. AD是O的切线. (2)解:由(1)可知ABE=90. AE=2AO=6, AB=4, . E=C=BAD, BDAB, . 【思考2解析】解:(1)直线BD与O相切 证明:如图3,连结OB- OCB=CBD +D ,1=D, 2=CBD ABOC , 2=A A=CBD OB=OC, , , OBD=90 直线BD与O相切 (2)解: D=ACB , 在RtOBD中,OBD=90,OB = 4, , 【思考3解析】OBGECMAF1231)证明:连结,则平分在中,是角平分线,与相切(2)解:在中,是角平分线,在中,设的半径为,则,解得的半径为【思考4解析】证明:如图3,在AE上截取AF=BD,连结CF、CD 在ACF和BCD中, ACFBCD CF=CD. CEAD于E, EF=DE. . 【思考5解析】证明:(1)连接OC,2012年中考数学总复习重点知识专题讲解第四讲 一元二次方程与二次函数【知识点诠释】前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。 一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。第一部分 真题精讲【例1】2010,西城,一模已知:关于的方程求证:取任何实数时,方程总有实数根;若二次函数的图象关于轴对称求二次函数的解析式;已知一次函数,证明:在实数范围内,对于的同一个值,这两个函数所对应的函数值均成立;在条件下,若二次函数的图象经过点,且在实数范围内,对于的同一个值,这三个函数所对应的函数值,均成立,求二次函数的解析式【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M0两种情况,然后利用根的判别式去判断。第二问的第一小问考关于Y轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。事实上这个一次函数恰好是抛物线的一条切线,只有一个公共点(1,0)。根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。于是通过代点,将用只含a的表达式表示出来,再利用,构建两个不等式,最终分析出a为何值时不等式取等号,于是可以得出结果.【解析】解:(1)分两种情况:当时,原方程化为,解得, (不要遗漏)当,原方程有实数根. 当时,原方程为关于的一元二次方程, . 原方程有两个实数根. (如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了) 综上所述,取任何实数时,方程总有实数根. (2)关于的二次函数的图象关于轴对称,.(关于Y轴对称的二次函数一次项系数一定为0).抛物线的解析式为. ,(判断大小直接做差)(当且仅当时,等号成立). (3)由知,当时,.、的图象都经过. (很重要,要对那个等号有敏锐的感觉)对于的同一个值,的图象必经过. 又经过,. (巧妙的将表达式化成两点式,避免繁琐计算)设.对于的同一个值,这三个函数所对应的函数值均成立,.又根据、的图象可得 ,.(a0时,顶点纵坐标就是函数的最小值). .而.只有,解得.抛物线的解析式为. 【例2】2010,门头沟,一模关于的一元二次方程.(1)当为何值时,方程有两个不相等的实数根;(2)点是抛物线上的点,求抛物线的解析式;(3)在(2)的条件下,若点与点关于抛物线的对称轴对称,是否存在与抛物线只交于点的直线,若存在,请求出直线的解析式;若不存在,请说明理由.【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。第二问给点求解析式,比较简单。值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b的形式并未包括斜率不存在即垂直于x轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.【解析】:(1)由题意得 解得 解得 当且时,方程有两个不相等的实数根. (2)由题意得 解得(舍) (始终牢记二次项系数不为0) (3)抛物线的对称轴是 由题意得 (关于对称轴对称的点的性质要掌握) 与抛物线有且只有一个交点 (这种情况考试中容易遗漏) 另设过点的直线() 把代入,得, 整理得有且只有一个交点, 解得 综上,与抛物线有且只有一个交点的直线的解析式有,【例3】已知P()和Q(1,)是抛物线上的两点(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值【思路分析】 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组,十分麻烦,计算量大,浪费时间并且可能出错。但是仔细看题,发现P,Q纵坐标是一样的,说明他们关于抛物线的对称轴对称。而抛物线只有一个未知系数,所以轻松写出对称轴求出b。 第二问依然是判别式问题,比较简单。第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察。考生一定要把握平移后解析式发生的变化,即左加右减(单独的x),上加下减(表达式整体)然后求出结果。【解析】(1)因为点P 、Q在抛物线上且纵坐标相同,所以P、Q关于抛物线对称轴对称并且到对称轴距离相等所以,抛物线对称轴,所以,(2)由(1)可知,关于的一元二次方程为=0因为,=168=80所以,方程有两个不同的实数根,分别是 ,(3)由(1)可知,抛物线的图象向上平移(是正整数)个单位后的解析式为若使抛物线的图象与轴无交点,只需 无实数解即可由=0,得又是正整数,所以得最小值为2【例4】2010,昌平,一模已知抛物线,其中是常数(1)求抛物线的顶点坐标;(2)若,且抛物线与轴交于整数点(坐标为整数的点),求此抛物线的解析式【思路分析】本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a提出来,里面就是一个关于X的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给,合理变换以后代入判别式,求得整点的可能取值.(1)依题意,得, 抛物线的顶点坐标为 (2)抛物线与轴交于整数点,的根是整数是整数,是整数 是整数的完全平方数, (很多考生想不到这种变化而导致后面无从下手)取1,4,当时,; 当时, 的值为2或 抛物线的解析式为或【例5】2010,平谷,一模已知:关于的一元二次方程(为实数)(1)若方程有两个不相等的实数根,求的取值范围;(2)在(1)的条件下,求证:无论取何值,抛物线总过轴上的一个固定点;(3)若是整数,且关于的一元二次方程有两个不相等的整数根,把抛物线向右平移个单位长度,求平移后的解析式【思路分析】本题第一问比较简单,直接判别式0就可以了,依然不能遗漏的是m10。第二问则是比较常见的题型.一般来说求固定点既是求一个和未知系数无关的X,Y的取值.对于本题来说,直接将抛物线中的m提出,对其进行因式分解得到y=(mxx1)(x+1)就可以看出当x=1时,Y=0,而这一点恰是抛物线横过的X轴上固定点.如果想不到因式分解,由于本题固定点的特殊性(在X轴上),也可以直接用求根公式求出两个根,标准答案既是如此,但是有些麻烦,不如直接因式分解来得快.至于第三问,又是整数根问题+平移问题,因为第二问中已求出另一根,所以直接令其为整数即可,比较简单.解:(1)方程有两个不相等的实数根, ,的取值范围是且. (2)证明:令得. (这样做是因为已经知道判别式是,计算量比较小,如果根号内不是完全平方就需要注意了)抛物线与轴的交点坐标为,无论取何值,抛物线总过定点 (3)是整数 只需是整数.是整数,且, 当时,抛物线为把它的图象向右平移个单位长度,得到的抛物线解析式为 【总结】 中考中一元二次方程与二次函数几乎也是必考内容,但是考点无非也就是因式分解,判别式,对称轴,两根范围,平移以及直线与抛物线的交点问题。总体来说这类题目不难,但是需要计算认真,尤其是求根公式的应用一定要注意计算的准确性。这种题目大多包涵多个小问。第一问往往是考验判别式大于0,不要忘记二次项系数为0或者不为0的情况。第2,3问基于函数或者方程对其他知识点进行考察,考生需要熟记对称轴,顶点坐标等多个公式的直接应用。至于根与系数的关系(韦达定理)近年来中考已经尽量避免提及,虽不提倡但是应用了也不会扣分,考生还是尽量掌握为好,在实际应用中能节省大量的时间。第二部分 发散思考【思考1】. 2010,北京中考已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围. 【思路分析】去年中考原题,相信有些同学已经做过了.第一问自不必说,判别式大于0加上k为正整数的条件求k很简单.第二问要分情况讨论当k取何值时方程有整数根,一个个代进去看就是了,平移倒是不难,向下平移就是整个表达式减去8.但是注意第三问,函数关于对称轴的翻折,旋转问题也是比较容易在中考中出现的问题,一定要熟练掌握关于对称轴翻折之后函数哪些地方发生了变化,哪些地方没有变.然后利用画图解决问题.【思考2】2009,东城,一模已知:关于的一元二次方程(1)若求证:方程有两个不相等的实数根;(2)若12m40的整数,且方程有两个整数根,求的值【思路分析】本题也是整根问题,但是不像上题,就三个值一个个试就可以试出来结果。本题给定一个比较大的区间,所以就需要直接用求根公式来计算.利用已知区间去求根的判别式的区间,也对解不等式做出了考察.【思考3】2009,海淀,一模已知: 关于x的一元一次方程kx=x+2 的根为正实数,二次函数y=ax2bx+kc(c0)的图象与x轴一个交点的横坐标为1. (1)若方程的根为正整数,求整数k的值; (2)求代数式的值;(3)求证: 关于x的一元二次方程ax2bx+c=0 必有两个不相等的实数根.【思路分析】本题有一定难度,属于拉分题目。第一问还好,分类讨论K的取值即可。第二问则需要将k用a,b表示出来,然后代入代数式进行转化.第三问则比较繁琐,需要利用题中一次方程的根为正实数这一条件所带来的不等式,去证明二次方程根的判别式大于0.但是实际的考试过程中,考生在化简判别式的过程中想不到利用已知条件去套未知条件,从而无从下手导致失分.【思考4】2009,顺义,一模. 已知:关于的一元二次方程(1)求证:不论取何值,方程总有两个不相等的实数根;(2)若方程的两个实数根满足,求的值【思路分析】这一题第二问有些同学想到直接平方来去绝对值,然后用韦达定理进行求解,但是这样的话计算量就会非常大,所以此题绕过韦达定理,直接用根的判别式写出,发现都是关于m的一次表达式, 做差之后会得到一个定值.于是问题轻松求解. 这个题目告诉我们高级方法不一定简单,有的时候最笨的办法也是最好的办法.第三部分 思考题解析【思考1解析】解:(1)由题意得,为正整数,(2)当时,方程有一个根为零;当时,方程无整数根;当时,方程有两个非零的整数根综上所述,和不合题意,舍去;符合题意当时,二次函数为,把它的图象向下平移8个单位得到的图象的解析式为AOxy864224B(3)设二次函数的图象与轴交于两点,则,依题意翻折后的图象如图所示当直线经过点时,可得;当直线经过点时,可得由图象可知,符合题意的的取值范围为【思考2解析】证明: 方程有两个不相等的实数根。 (2)方程有两个整数根,必须使且m为整数又12m40, 59m=24 【思考3解析】解:由 kx=x+2,得(k1) x=2.依题意 k10. . 方程的根为正整数,k为整数, k1=1或k1=2. k1= 2, k2=3. (2)解:依题意,二次函数y=ax2bx+kc的图象经过点(1,0), 0 =ab+kc, kc = ba . = (3)证明:方程的判别式为 =(b)24ac= b24ac. 由a0, c0, 得ac0.( i ) 若ac0. 故=b24ac0. 此时方程有两个不相等的实数根. ( ii ) 证法一: 若ac0, 由(2)知ab+kc =0, 故 b=a+kc.=b24ac= (a+kc)24ac=a2+2kac+(kc)24ac = a22kac+(kc)2+4kac4ac=(akc)2+4ac(k1). 方程kx=x+2的根为正实数, 方程(k1) x=2的根为正实数.由 x0, 20, 得 k10. 4ac(k1)0. (akc)20, =(akc)2+4ac(k1)0. 此时方程有两个不相等的实数根. 证法二: 若ac0, 抛物线y=ax2bx+kc与x轴有交点, 1=(b)24akc =b24akc0.(b24ac)( b24akc)=4ac(k1). 由证法一知 k10, b24ac b24akc0. = b24ac0. 此时方程有两个不相等的实数根. 综上, 方程有两个不相等的实数根.【思考4解析】(1) 不论取何值,方程总有两个不相等实数根 (2)由原方程可得 又 经检验:符

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论