




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲空间点、线、面的位置关系年份卷别考查内容及考题位置命题分析2018卷面面垂直的证明T18(1)1.高考对此部分的命题较为稳定,一般为“一小一大”或“一大”,即一道选择或填空题和一道解答题或仅一道解答题2选择题一般在第1011题的位置,填空题一般在第14题的位置,多考查线面位置关系的判断,难度较小3解答题多出现在第18或19题的第一问的位置,考查空间中平行或垂直关系的证明,难度中等.卷异面直线所成的角T9线面垂直的证明T20(1)卷面面垂直的证明T19(1)2017卷面面垂直的证明T18(1)卷空间异面直线所成角的余弦值的计算T10线面平行的证明T19(1)卷圆锥、空间线线角的求解T16面面垂直的证明T19(1)2016卷求异面直线所成的角T11面面垂直的证明T18(1)卷空间中线、面位置关系的判定与性质T14线面垂直的证明T19(1)卷线面平行的证明T19(1)空间线面位置关系的判定(基础型)判断与空间位置关系有关命题真假的3种方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断(2)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断(3)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定考法全练1在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()AA1EDC1 BA1EBDCA1EBC1 DA1EAC解析:选C.A1B1平面BCC1B1,BC1平面BCC1B1,所以A1B1BC1,又BC1B1C,且B1CA1B1B1,所以BC1平面A1B1CD,又A1E平面A1B1CD,所以BC1A1E.故选C.2已知直线l和两个不同的平面,则下列命题是真命题的是()A若l,且l,则B若l,且l,则C若l,且,则lD若l,且,则l解析:选B.对于A,若l,且l,则或与相交,所以A错;因为垂直于同一条直线的两个平面平行,所以B正确;对于C,若l,且,则l与相交或l或l,所以C错;对于D,若l,且,则l或l,所以D错故选B.3(2018惠州第二次调研)设l,m,n为三条不同的直线,为一个平面,则下列命题中正确的个数是()若l,则l与相交;若m,n,lm,ln,则l;若lm,mn,l,则n;若lm,m,n,则ln.A1 B2C3 D4解析:选C.对于,若l,则l与不可能平行,l也不可能在内,所以l与相交,正确;对于,若m,n,lm,ln,则有可能是l,故错误;对于,若lm,mn,则ln,又l,所以n,故正确;对于,因为m,n,所以mn,又lm,所以ln,故正确选C.4,是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么;如果m,n,那么mn;如果,m,那么m;如果mn,那么m与所成的角和n与所成的角相等其中正确的命题有_(填写所有正确命题的编号)解析:对于命题,可运用长方体举反例证明其错误:如图,不妨设AA为直线m,CD为直线n,ABCD所在的平面为,ABCD所在的平面为,显然这些直线和平面满足题目条件,但不成立命题正确,证明如下:设过直线n的某平面与平面相交于直线l,则ln,由m知ml,从而mn,结论正确由平面与平面平行的定义知命题正确由平行的传递性及线面角的定义知命题正确答案:空间中平行、垂直关系的证明(综合型) 直线、平面平行的判定及其性质(1)线面平行的判定定理:a,b,aba.(2)线面平行的性质定理:a,a,bab.(3)面面平行的判定定理:a,b,abP,a,b.(4)面面平行的性质定理:,a,bab. 直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m,n,mnP,lm,lnl.(2)线面垂直的性质定理:a,bab.(3)面面垂直的判定定理:a,a.(4)面面垂直的性质定理:,l,a,al a. 典型例题 由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E平面ABCD.(1)证明:A1O平面B1CD1;(2)设M是OD的中点,证明:平面A1EM平面B1CD1.【证明】(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCDA1B1C1D1为四棱柱,所以A1O1OC,A1O1OC,因此四边形A1OCO1为平行四边形,所以A1OO1C.又O1C平面B1CD1,A1O平面B1CD1,所以A1O平面B1CD1.(2)因为ACBD,E,M分别为AD和OD的中点,所以EMBD.又A1E平面ABCD,BD平面ABCD,所以A1EBD.因为B1D1BD,所以EMB1D1,A1EB1D1.又A1E,EM平面A1EM,A1EEME,所以B1D1平面A1EM.又B1D1平面B1CD1,所以平面A1EM平面B1CD1.平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化 对点训练1.如图,在四棱锥PABCD中,平面PAB平面ABCD,ADBC,PAAB,CDAD,BCCDAD,E为AD的中点(1)求证:PACD.(2)求证:平面PBD平面PAB.证明:(1)因为平面PAB平面ABCD,平面PAB平面ABCDAB,又因为PAAB,所以PA平面ABCD.则PACD.(2)由已知,BCED,且BCED,所以四边形BCDE是平行四边形,又CDAD,BCCD,所以四边形BCDE是正方形,连接CE(图略),所以BDCE,又因为BCAE,BCAE,所以四边形ABCE是平行四边形,所以CEAB,则BDAB.由(1)知PA平面ABCD,所以PABD,又因为PAABA,则BD平面PAB,且BD平面PBD,所以平面PBD平面PAB.2.如图,已知斜三棱柱ABCA1B1C1中,点D,D1分别为AC,A1C1上的点(1)当等于何值时,BC1平面AB1D1?(2)若平面BC1D平面AB1D1,求的值解:(1)如图,取D1为线段A1C1的中点,此时1,连接A1B交AB1于点O,连接OD1.由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点在A1BC1中,点O,D1分别为A1B,A1C1的中点,所以OD1BC1.又因为OD1平面AB1D1,BC1平面AB1D1,所以BC1平面AB1D1.所以当1时,BC1平面AB1D1.(2)由已知,平面BC1D平面AB1D1,且平面A1BC1平面BDC1BC1,平面A1BC1平面AB1D1D1O.因此BC1D1O,同理AD1DC1.因为,.又因为1,所以1,即1.平面图形的折叠问题(综合型)典型例题 如图,在直角梯形ABCD中,ADBC,ADC90,ABBC.把BAC沿AC折起到PAC的位置,使得P点在平面ADC上的正投影O恰好落在线段AC上,如图所示,点E,F分别为棱PC,CD的中点(1)求证:平面OEF平面PAD;(2)求证:CD平面POF;(3)若AD3,CD4,AB5,求三棱锥ECFO的体积【解】(1)证明:因为点P在平面ADC上的正投影O恰好落在线段AC上,所以PO平面ADC,所以POAC.由题意知O是AC的中点,又点E是PC的中点,所以OEPA,又OE平面PAD,PA平面PAD,所以OE平面PAD.同理,OF平面PAD.又OEOFO,OE,OF平面OEF,所以平面OEF平面PAD.(2)证明:因为OFAD,ADCD,所以OFCD.又PO平面ADC,CD平面ADC,所以POCD.又OFPOO,所以CD平面POF.(3)因为ADC90,AD3,CD4,所以SACD346,而点O,F分别是AC,CD的中点,所以SCFOSACD,由题意可知ACP是边长为5的等边三角形,所以OP,即点P到平面ACD的距离为,又E为PC的中点,所以E到平面CFO的距离为,故VECFO.平面图形折叠问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形 对点训练如图1,在直角梯形ABCD中,ADBC,BAD,ABBCADa,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到图2中A1BE的位置,得到四棱锥A1BCDE.(1)证明:CD平面A1OC;(2)当平面A1BE平面BCDE时,四棱锥A1BCDE的体积为36,求a的值解:(1)证明:在图1中,因为ABBCADa,E是AD的中点,BAD,所以BEAC.即在图2中,BEA1O,BEOC,从而BE平面A1OC,又CDBE,所以CD平面A1OC.(2)由已知,平面A1BE平面BCDE,且平面A1BE平面BCDEBE,又由(1)知,A1OBE,所以A1O平面BCDE,即A1O是四棱锥A1BCDE的高由图1知,A1OABa,平行四边形BCDE的面积SBEOCa2.从而四棱锥A1BCDE的体积为VSA1Oa2aa3,由a336,得a6.一、选择题1设为平面,a、b为两条不同的直线,则下列叙述正确的是()A若a,b,则abB若a,ab,则bC若a,ab,则bD若a,ab,则b解析:选B.若a,b,则a与b相交、平行或异面,故A错误;易知B正确;若a,ab,则b或b,故C错误;若a,ab,则b或b或b与相交,故D错误故选B.2设l是直线,是两个不同的平面,则下列说法正确的是()A若l,l,则B若l,l,则C若,l,则lD若,l,则l解析:选B.对于A,若l,l,则或与相交,故A错;易知B正确;对于C,若,l,则l或l,故C错;对于D,若,l,则l与的位置关系不确定,故D错故选B.3.如图,在三棱锥DABC中,若ABCB,ADCD,E是AC的中点,则下列命题中正确的是()A平面ABC平面ABDB平面ABD平面BCDC平面ABC平面BDE,且平面ACD平面BDED平面ABC平面ACD,且平面ACD平面BDE解析:选C.因为ABCB,且E是AC的中点,所以BEAC,同理,DEAC,由于DEBEE,于是AC平面BDE.因为AC平面ABC,所以平面ABC平面BDE.又AC平面ACD,所以平面ACD平面BDE.故选C.4已知m,n是两条不同的直线,是两个不同的平面,给出四个命题:若m,n,nm,则;若m,m,则;若m,n,mn,则;若m,n,mn,则.其中正确的命题是()ABCD解析:选B.两个平面斜交时也会出现一个平面内的直线垂直于两个平面的交线的情况,不正确;垂直于同一条直线的两个平面平行,正确;当两个平面与两条互相垂直的直线分别垂直时,它们所成的二面角为直二面角,故正确;当两个平面相交时,分别与两个平面平行的直线也平行,故不正确5(2018高考全国卷)在长方体ABCDA1B1C1D1中,ABBC1,AA1,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.解析:选C.如图,连接BD1,交DB1于O,取AB的中点M,连接DM,OM,易知O为BD1的中点,所以AD1OM,则MOD为异面直线AD1与DB1所成角因为在长方体ABCDA1B1C1D1中,ABBC1,AA1,AD12,DM,DB1,所以OMAD11,ODDB1,于是在DMO中,由余弦定理,得cosMOD,即异面直线AD1与DB1所成角的余弦值为,故选C.6.如图,在矩形ABCD中,AB,BC1,将ACD沿AC折起,使得D折起后的位置为D1,且D1在平面ABC上的射影恰好落在AB上,在四面体D1ABC的四个面中,有n对平面相互垂直,则n等于()A2B3C4D5解析:选B.如图,设D1在平面ABC上的射影为E,连接D1E,则D1E平面ABC,因为D1E平面ABD1,所以平面ABD1平面ABC.因为D1E平面ABC,BC平面ABC,所以D1EBC,又ABBC,D1EABE,所以BC平面ABD1,又BC平面BCD1,所以平面BCD1平面ABD1,因为BC平面ABD1,AD1平面ABD1,所以BCAD1,又CD1AD1,BCCD1C,所以AD1平面BCD1,又AD1平面ACD1,所以平面ACD1平面BCD1.所以共有3对平面互相垂直故选B.二、填空题7(2018广州调研)正方体ABCDA1B1C1D1的棱长为2,点M为CC1的中点,点N为线段DD1上靠近D1的三等分点,平面BMN交AA1于点Q,则线段AQ的长为_解析:如图所示,在线段DD1上靠近点D处取一点T,使得DT,因为N是线段DD1上靠近D1的三等分点,故D1N,故NT21,因为M为CC1的中点,故CM1,连接TC,由NTCM,且CMNT1,知四边形CMNT为平行四边形,故CTMN,同理在AA1上靠近A处取一点Q,使得AQ,连接BQ,TQ,则有BQCTMN,故BQ与MN共面,即Q与Q重合,故AQ.答案:8.如图,ACB90,DA平面ABC,AEDB交DB于点E,AFDC交DC于点F,且ADAB2,则三棱锥DAEF体积的最大值为_解析:因为DA平面ABC,所以DABC,又BCAC,DAACA,所以BC平面ADC,所以BCAF.又AFCD,BCCDC,所以AF平面DCB,所以AFEF,AFDB.又DBAE,AEAFA,所以DB平面AEF,所以DE为三棱锥DAEF的高因为AE为等腰直角三角形ABD斜边上的高,所以AE,设AFa,FEb,则AEF的面积Sab,所以三棱锥DAEF的体积V(当且仅当ab1时等号成立)答案:9(2018昆明调研)在长方体ABCDA1B1C1D1中,ABAD4,AA12.过点A1作平面与AB,AD分别交于M,N两点,若AA1与平面所成的角为45,则截面A1MN面积的最小值是_解析:如图,过点A作AEMN,连接A1E,因为A1A平面ABCD,所以A1AMN,所以MN平面A1AE,所以A1EMN,平面A1AE平面A1MN,所以AA1E为AA1与平面A1MN所成的角,所以AA1E45,在RtA1AE中,因为AA12,所以AE2,A1E2,在RtMAN中,由射影定理得MEENAE24,由基本不等式得MNMEEN24,当且仅当MEEN,即E为MN的中点时等号成立,所以截面A1MN面积的最小值为424.答案:4三、解答题10.如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD、BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.证明:(1)在平面ABD内,因为ABAD,EFAD,所以EFAB.又因为EF平面ABC,AB平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面ABD平面BCDBD,BC平面BCD且BCBD,所以BC平面ABD.因为AD平面ABD,所以BCAD.又因为ABAD,BCABB,AB平面ABC,BC平面ABC,所以AD平面ABC.又因为AC平面ABC,所以ADAC.11.如图所示,已知AB平面ACD,DE平面ACD,ACD为等边三角形,ADDE2AB,F为CD的中点求证:(1)AF平面BCE;(2)平面BCE平面CDE.证明:(1)如图,取CE的中点G,连接FG,BG.因为F为CD的中点,所以GFDE且GFDE.因为AB平面ACD,DE平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/TR 25295:2025 EN Footwear - Global last measurement systems
- 【正版授权】 ISO/IEC 9594-5:2020/Amd 1:2025 EN Information technology - Open systems interconnection - Part 5: The Directory: Protocol specifications - Amendment 1: Miscellaneous enhance
- 【正版授权】 ISO 12628:2022/Amd 1:2025 EN Thermal insulating products for building equipment and industrial installations - Determination of dimensions,squareness and linearity of prefo
- 2025年投资项目管理师之宏观经济政策题库附答案(典型题)
- 2020-2025年劳务员之劳务员基础知识强化训练试卷A卷附答案
- 圆的面积课件教学
- 第五章气相色谱分析法第二节气相色谱仪76课件
- 第六章反应器第三节管式反应器55课件
- 书法教学指导课件下载
- 儿童烘焙课堂教学课件
- 【真题】江苏省苏州市2025年中考物理试卷(含答案解析)
- 卡口及道路交通智能监控系统方案设计
- 呼吸机相关性肺炎的预防和护理
- 肺结核鉴别诊断
- 门诊口腔院感基础知识培训
- 论咏叹调《妈妈不在》的形象刻画与唱段处理
- 2025年邮政社招笔试考试历年真题及答案
- 2025年河南省中考数学试卷及答案
- 仓库技能考试试题及答案
- 子宫平滑肌瘤护理
- Q∕GDW 12127-2021 低压开关柜技术规范
评论
0/150
提交评论