




已阅读5页,还剩42页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平移旋转与对称一.选择题1.(2018江苏无锡3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A1个B2个C3个D4个【分析】直接利用轴对称图形的性质画出对称轴得出答案【解答】解:如图所示:直线l即为各图形的对称轴,故选:D【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键2.(2018江苏徐州2分)下列图形中,是轴对称图形但不是中心对称图形的是()A正三角形B菱形C直角梯形D正六边形【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A.是轴对称图形,不是中心对称图形正确;B.是轴对称图形,也是中心对称图形错误;C.不是轴对称图形,也不是中心对称图形错误;D.是轴对称图形,也是中心对称图形错误故选:A【点评】掌握中心对称图形与轴对称图形的概念轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形3.(2018江苏苏州3分)下列四个图案中,不是轴对称图案的是()ABCD【分析】根据轴对称的概念对各选项分析判断利用排除法求解【解答】解:A.是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项正确;C.是轴对称图形,故本选项错误;D.是轴对称图形,故本选项错误故选:B【点评】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合4.(2018山东烟台市3分)在学习图形变化的简单应用这一节时,老师要求同学们利用图形变化设计图案下列设计的图案中,是中心对称图形但不是轴对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,也是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项正确;D.是轴对称图形,也是中心对称图形,故此选项错误故选:C【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5. (2018达州3分)下列图形中是中心对称图形的是()ABCD【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【解答】解:A.不是中心对称图形,故此选项错误;B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误;D.不是中心对称图形,故此选项错误;故选:B【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义6(2018临安3分如图直角梯形ABCD中,ADBC,ABBC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90至ED,连AE.CE,则ADE的面积是()A1B2C3D不能确定【分析】如图作辅助线,利用旋转和三角形全等证明DCG与DEF全等,再根据全等三角形对应边相等可得EF的长,即ADE的高,然后得出三角形的面积【解答】解:如图所示,作EFAD交AD延长线于F,作DGBC,CD以D为中心逆时针旋转90至ED,EDF+CDF=90,DE=CD,又CDF+CDG=90,CDG=EDF,在DCG与DEF中,DCGDEF(AAS),EF=CG,AD=2,BC=3,CG=BCAD=32=1,EF=1,ADE的面积是:ADEF=21=1故选:A7. (2018金华、丽水3分)如图,将ABC绕点C顺时针旋转90得到EDC 若点A , D , E在同一条直线上,ACB=20,则ADC的度数是( )A.55B.60C.65D.70【解析】【解答】解:将ABC绕点C顺时针旋转90得到EDC ACE=90,AC=CE , E=45,ADC是CDE的外角,ADC=E+DCE=45+20=65,故答案为:C。【分析】根据旋转的性质可知,旋转前后的两个图形是全等的,并且对应边的旋转角的度数是一样的。则ACE=90,AC=CE , DCE=ACB=20,可求出E的度数,根据外角的性质可求得ADC的度数8. (2018贵州安顺3分)下面四个手机应用图标中是轴对称图形的是( )A. B. C. D. 【答案】D【解析】分析:分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可详解:A.既不是轴对称图形,也不是中心对称图形,故本选项错误;B.是中心对称图形,故本选项错误;C.既不是轴对称图形,也不是中心对称图形,故本选项错误;D.是轴对称图形,故本选项正确故选D点睛:本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键9. (2018广西桂林3分)下列图形是轴对称图形的是( )A. B. C. D. 【答案】A【解析】分析:根据轴对称图形的概念对各选项分析判断即可得解详解:A.是轴对称图形,故本选项正确;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误故选:A点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10. (2018广西桂林3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,AEM与ADM关于AM所在的直线对称,将ADM按顺时针方向绕点A旋转90得到ABF,连接EF,则线段EF的长为( )A. 3 B. C. D. 【答案】C【解析】分析:连接BM.证明AFEAMB得FE=MB,再运用勾股定理求出BM的长即可.详解:连接BM,如图,由旋转的性质得:AM=AF.四边形ABCD是正方形,AD=AB=BC=CD,BAD=C=90,AEM与ADM关于AM所在的直线对称,DAM=EAM.DAM+BAM=FAE+EAM=90,BAM=EAF,AFEAMBFE=BM.在RtBCM中,BC=3,CM=CD-DM=3-1=2,BM= FE=.故选C.11. (2018广西南宁3分)下列美丽的壮锦图案是中心对称图形的是()ABCD【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案【解答】解:A.是中心对称图形,故此选项正确;B.不是中心对称图形,故此选项错误;C.不是中心对称图形,故此选项错误;D.不是中心对称图形,故此选项错误;故选:A【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义12. (2018黑龙江哈尔滨3分)下列图形中既是轴对称图形又是中心对称图形的是()ABCD【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论【解答】解:A.此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B.此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C.此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D.此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键13. (2018黑龙江龙东地区3分)下列图形中,既是轴对称图形又是中心对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A.不是轴对称图形,是中心对称图形,故此选项错误;B.是轴对称图形,不是中心对称图形,故此选项错误;C.是轴对称图形,也是中心对称图形,故此选项正确;D.不是轴对称图形,是中心对称图形,故此选项错误故选:C【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合14. (2018黑龙江齐齐哈尔3分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个B2个C3个D4个【分析】根据轴对称图形与中心对称图形的概念判断即可【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点评】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合15. (2018湖北省恩施3分)在下列图形中,既是轴对称图形又是中心对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A.不是轴对称图形,是中心对称图形,故此选项错误;B.是轴对称图形,不是中心对称图形,故此选项错误;C.不是轴对称图形,也不是中心对称图形,故此选项错误;D.是轴对称图形,也是中心对称图形,故此选项正确故选:D【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合16.(2018广东3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A圆B菱形C平行四边形D等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.是轴对称图形,也是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确故选:D【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合17.(2018广西北海3分)下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转 180后,能与自身重合,那么这个图形就叫做中心对称图形。【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合18. (2018广西北海3分)如图,矩形纸片 ABCD,AB4,BC3,点 P 在 BC 边上,将CDP 沿 DP 折叠,点 C落在点 E 处,PE.DE 分别交 AB 于点 O、F,且 OPOF,则 cosADF 的值为11131517A.B.C.D.13151719【答案】C【考点】折叠问题:勾股定理列方程,解三角形,三角函数值【解析】由题意得:RtDCPRtDEP,所以 DCDE4,CPEP在 RtOEF 和 RtOBP 中,EOFBOP,BE,OPOFRtOEFRtOBP(AAS),所以 OEOB,EFBP设 EF 为 x,则 BPx,DFDEEF4x,又因为 BFOFOBOPOEPEPC,PCBCBP3x所以,AFABBF4(3x)1x在 RtDAF 中,AF2AD2DF2,也就是(1x)232(4x)233317解之得,x5,所以 EF5,DF45 5AD15最终,在 RtDAF 中,cosADFDF17【点评】本题由题意可知,RtDCPRtDEP 并推理出 RtOEFRtOBP,寻找出合适的线段设未知数,运用勾股定理列方程求解,并代入求解出所求cos 值即可得。19.(2018广西贵港3分)若点A(1+m,1n)与点B(3,2)关于y轴对称,则m+n的值是()A5B3C3D1【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得【解答】解:点A(1+m,1n)与点B(3,2)关于y轴对称,1+m=3.1n=2,解得:m=2.n=1,所以m+n=21=1,故选:D【点评】本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数20.(2018海南3分)如图,在平面直角坐标系中,ABC位于第一象限,点A的坐标是(4,3),把ABC向左平移6个单位长度,得到A1B1C1,则点B1的坐标是()A(2,3)B(3,1)C(3,1)D(5,2)【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)P(xa,y),据此求解可得【解答】解:点B的坐标为(3,1),向左平移6个单位后,点B1的坐标(3,1),故选:C【点评】本题主要考查坐标与图形的变化平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减21.(2018贵州遵义3分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()ABCD【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C22.(2018贵州黔西南州4分)下列图案中,既是轴对称图形又是中心对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,不是中心对称图形,故此选项错误;C.是轴对称图形,不是中心对称图形,故此选项错误;D.是轴对称图形,也是中心对称图形,故此选项正确故选:D【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合23.(2018海南3分)如图,在ABC中,AB=8,AC=6,BAC=30,将ABC绕点A逆时针旋转60得到AB1C1,连接BC1,则BC1的长为()A6B8C10D12【分析】根据旋转的性质得出AC=AC1,BAC1=90,进而利用勾股定理解答即可【解答】解:将ABC绕点A逆时针旋转60得到AB1C1,AC=AC1,CAC1=90,AB=8,AC=6,BAC=30,BAC1=90,AB=8,AC1=6,在RtBAC1中,BC1的长=,故选:C【点评】此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,BAC1=9024(2018年湖南省娄底市)如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针方向旋转60到AB位置,则AB中水柱的长度约为()A4cmB6cmC8cmD12cm【分析】AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,易得AC=2CH=x,细管绕A处顺时针方向旋转60到AB位置时,底面积为2S,利用水的体积不变得到xS+x2S=6S+6S,然后求出x后计算出AC即可【解答】解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,BAH=9060=30,AC=2CH=x,细管绕A处顺时针方向旋转60到AB位置时,底面积为2S,xS+x2S=6S+6S,解得x=4,AC=2x=8,即AB中水柱的长度约为8cm故选:C【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等25(2018湖南省邵阳市)(3分)下列图形中,是轴对称图形的是()ABCD【分析】根据轴对称图形的概念进行判断即可【解答】解:A.不是轴对称图形,故此选项错误;B.是轴对称图形,故此选项正确;C.不是轴对称图形,故此选项错误;D.不是轴对称图形,故此选项错误;故选:B【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合26. (2018湖南长沙3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()ABCD【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果【解答】解:绕直线l旋转一周,可以得到圆台,故选:D【点评】本题考查立体图形的判断,关键是根据面动成体以及圆台的特点解答27. (2018湖南长沙3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:A.是轴对称图形,是中心对称图形,故此选项正确;B.是轴对称图形,不是中心对称图形,故此选项错误;C.不是轴对称图形,不是中心对称图形,故此选项错误;D.不是轴对称图形,是中心对称图形,故此选项错误;故选:A【点评】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合28. (2018湖南张家界3.00分)下列图形中,既是中心对称图形,又是轴对称图形的是()ABCD【分析】根据轴对称图形与中心对称图形的概念进行判断即可【解答】解:A.不是轴对称图形,是中心对称图形故错误;B.是轴对称图形,不是中心对称图形故错误;C.是轴对称图形,也是中心对称图形故正确;D.是轴对称图形,不是中心对称图形故错误故选:C【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合29. (2018湖南湘西州4.00分)下列四个图形中,是轴对称图形的是()ABCD【分析】根据轴对称图形的概念求解【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形故选:D【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合30. (2018达州3分)下列图形中是中心对称图形的是()ABCD【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【解答】解:A.不是中心对称图形,故此选项错误;B.是中心对称图形,故此选项正确;C.不是中心对称图形,故此选项错误;D.不是中心对称图形,故此选项错误;故选:B【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义二.填空题1. (2018湖北随州3分)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,AOC=60,若将菱形OABC绕点O顺时针旋转75,得到四边形OABC,则点B的对应点B的坐标为(,)【分析】作BHx轴于H点,连结OB,OB,根据菱形的性质得到AOB=30,再根据旋转的性质得BOB=75,OB=OB=2,则AOB=BOBAOB=45,所以OBH为等腰直角三角形,根据等腰直角三角形性质可计算得OH=BH=,然后根据第四象限内点的坐标特征写出B点的坐标【解答】解:作BHx轴于H点,连结OB,OB,如图,四边形OABC为菱形,AOC=180C=60,OB平分AOC,AOB=30,菱形OABC绕原点O顺时针旋转75至第四象限OABC的位置,BOB=75,OB=OB=2,AOB=BOBAOB=45,OBH为等腰直角三角形,OH=BH=OB=,点B的坐标为(,)故答案为:(,)【点评】本题考查了坐标与图形变化旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,1802.(2018江苏宿迁3分)在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是_.【答案】(5,1)【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.【详解】点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,所得的点的坐标为:(5,1),故答案为:(5,1).【点睛】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.3.(2018江苏宿迁3分)如图,将含有30角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,OAB60,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60,再绕点C按顺时针方向旋转90,)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是_.【答案】+【分析】在RtAOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB=,在旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积:S=,计算即可得出答案.【详解】在RtAOB中,A(1,0),OA=1,又OAB60,cos60=,AB=2,OB=,在旋转过程中,三角板的角度和边的长度不变,点B运动的路径与坐标轴围成的图形面积:S=,故答案为:. 【点睛】本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.4.(2018江苏苏州3分)如图,在RtABC中,B=90,AB=2,BC=将ABC绕点A按逆时针方向旋转90得到ABC,连接BC,则sinACB=【分析】根据勾股定理求出AC,过C作CMAB于M,过A作ANCB于N,求出BM、CM,根据勾股定理求出BC,根据三角形面积公式求出AN,解直角三角形求出即可【解答】解:在RtABC中,由勾股定理得:AC=5,过C作CMAB于M,过A作ANCB于N,根据旋转得出AB=AB=2,BAB=90,即CMA=MAB=B=90,CM=AB=2,AM=BC=,BM=2=,在RtBMC中,由勾股定理得:BC=5,SABC=,5AN=22,解得:AN=4,sinACB=,故答案为:【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键5.(2018广西贵港3分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边BC与CD交于点M,若BMD=50,则BEF的度数为70【分析】设BEF=,则EFC=180,DFE=BEF=,CFE=40+,依据EFC=EFC,即可得到180=40+,进而得出BEF的度数【解答】解:C=C=90,DMB=CMF=50,CFM=40,设BEF=,则EFC=180,DFE=BEF=,CFE=40+,由折叠可得,EFC=EFC,180=40+,=70,BEF=70,故答案为:70【点评】本题主要考查了平行线的性质以及折叠问题,解题时注意:两直线平行,内错角相等,同旁内角互补6.(2018广西贵港3分)如图,在RtABC中,ACB=90,AB=4,BC=2,将ABC绕点B顺时针方向旋转到ABC的位置,此时点A恰好在CB的延长线上,则图中阴影部分的面积为4(结果保留)【分析】由将ABC绕点B顺时针方向旋转到ABC的位置,此时点A恰好在CB的延长线上,可得ABCABC,由题给图可知:S阴影=S扇形ABA+SABCS扇形CBCSABC可得出阴影部分面积【解答】解:ABC中,ACB=90,AB=4,BC=2,BAC=30,ABC=60,AC=2将ABC绕点B顺时针方向旋转到ABC的位置,此时点A恰好在CB的延长线上,ABCABC,ABA=120=CBC,S阴影=S扇形ABA+SABCS扇形CBCSABC=S扇形ABAS扇形CBC=4故答案为4【点评】本题主要考查了图形的旋转,不规则图形的面积计算,扇形的面积,发现阴影部分面积的计算方法是解题的关键7. (2018湖南张家界3.00分)如图,将ABC绕点A逆时针旋转150,得到ADE,这时点B,C,D恰好在同一直线上,则B的度数为15【分析】先判断出BAD=150,AD=AB,再判断出BAD是等腰三角形,最后用三角形的内角和定理即可得出结论【解答】解:将ABC绕点A逆时针旋转150,得到ADE,BAD=150,AD=AB,点B,C,D恰好在同一直线上,BAD是顶角为150的等腰三角形,B=BDA,B=(180BAD)=15,故答案为:15【点评】此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键三.解答题1. (2018湖北江汉油田、潜江市、天门市、仙桃市10分)问题:如图,在RtABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图,在RtABC与RtADE中,AB=AC,AD=AE,将ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图,在四边形ABCD中,ABC=ACB=ADC=45若BD=9,CD=3,求AD的长【分析】(1)证明BADCAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,ACE=B,得到DCE=90,根据勾股定理计算即可;(3)作AEAD,使AE=AD,连接CE,DE,证明BADCAE,得到BD=CE=9,根据勾股定理计算即可【解答】解:(1)BC=DC+EC,理由如下:BAC=DAE=90,BACDAC=DAEDAC,即BAD=CAE,在BAD和CAE中,BADCAE,BD=CE,BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,BADCAE,BD=CE,ACE=B,DCE=90,CE2+CD2=ED2,在RtADE中,AD2+AE2=ED2,又AD=AE,BD2+CD2=2AD2;(3)作AEAD,使AE=AD,连接CE,DE,BAC+CAD=DAE+CAD,即BAD=CAD,在BAD与CAE中,BADCAE(SAS),BD=CE=9,ADC=45,EDA=45,EDC=90,DE=6,DAE=90,AD=AE=DE=6【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键2.(2018江苏徐州7分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点B的坐标为(1,0)画出ABC关于x轴对称的A1B1C1;画出将ABC绕原点O按逆时针旋转90所得的A2B2C2;A1B1C1与A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;A1B1C1与A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90得到三点的对应点顺次连接各对应点得A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,)【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点3.(2018江苏徐州8分)已知二次函数的图象以A(1,4)为顶点,且过点B(2,5)求该函数的关系式;求该函数图象与坐标轴的交点坐标;将该函数图象向右平移,当图象经过原点时,A.B两点随图象移至A、B,求O AB的面积【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A、B的坐标由于OAB不规则,可用面积割补法求出OAB的面积【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,5)代入得:a=1该函数的解析式为:y=(x+1)2+4=x22x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,x22x+3=0,解得:x1=3,x2=1,即抛物线与x轴的交点为:(3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A(2,4),B(5,5)SOAB=(2+5)92455=15【点评】本题考查了用待定系数法求抛物线解析式、函数图象交点、图形面积的求法等知识不规则图形的面积通常转化为规则图形的面积的和差4.(2018江苏徐州10分)如图1,一副直角三角板满足AB=BC,AC=DE,ABC=DEF=90,EDF=30操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q探究一:在旋转过程中,(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;(2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为EP:EQ=1:m,其中m的取值范围是0m2+(直接写出结论,不必证明)探究二:若且AC=30cm,连接PQ,设EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由(2)随着S取不同的值,对应EPQ的个数有哪些变化,求出相应S的值或取值范围【分析】探究一:(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明BE=CE,PBE=C根据等角的余角相等可以证明BEP=CEQ即可得到全等三角形,从而证明结论;(2)作EMAB,ENBC于M、N,根据两个角对应相等证明MEPNWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE;(3)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析探究二:(1)设EQ=x,结合上述结论,用x表示出三角形的面积,根据x的最值求得面积的最值;(2)首先求得EQ和EB重合时的三角形的面积的值,再进一步分情况讨论【解答】解:探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得BE=CE,PBE=C,又BEP=CEQ,则BEPCEQ,得EP=EQ;(2)作EMAB,ENBC于M,N,EMP=ENC,MEP+PEN=PEN+NEF=90,MEP=NEF,MEPNEQ,EP:EQ=EM:EN=AE:CE=1:2;(3)过E点作EMAB于点M,作ENBC于点N,在四边形PEQB中,B=PEQ=90,EPB+EQB=180(四边形的内角和是360),又EPB+MPE=180(平角是180),MPE=EQN(等量代换),RtMEPRtNEQ(AA),(两个相似三角形的对应边成比例);在RtAMERtENC=m=,=1:m=,EP与EQ满足的数量关系式为EP:EQ=1:m,0m2+;(当m2+时,EF与BC不会相交)探究二:若AC=30cm,(1)设EQ=x,则S=x2,所以当x=10时,面积最小,是50cm2;当x=10时,面积最大,是75cm2(2)当x=EB=5时,S=62.5cm2,故当50S62.5时,这样的三角形有2个;当S=50或62.5S75时,这样的三角形有一个【点评】熟练运用等腰直角三角形的性质和相似三角形的判定和性质进行求解5.(2018江苏无锡10分)如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转(090)得到矩形A1BC1D1,点A1在边CD上(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若=1,求的值【分析】(1)作A1HAB于H,连接BD,BD1,则四边形ADA1H是矩形解直角三角形,求出ABA1,得到旋转角即可解决问题;(2)由BCEBA2D2,推出=,可得CE=由=1推出=,推出AC=,推出BH=AC=,可得m2n2=6,可得1=6,由此解方程即可解决问题;【解答】解:(1)作A1HAB于H,连接BD,BD1,则四边形ADA1H是矩形AD=HA1=n=1,在RtA1HB中,BA1=BA=m=2,BA1=2HA1,ABA1=30,旋转角为30,BD=,D到点D1所经过路径的长度=(2)BCEBA2D2,=,CE=1,=,AC=,BH=AC=,m2n2=6,m4m2n2=6n4,1=6,=(负根已经舍弃)【点评】本题考查轨迹,旋转变换、解直角三角形、弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型6.(2018山东济宁市3分)如图,在平面直角坐标系中,点 A,C 在 x 轴上,点 C 的坐标为(1,0),AC=2将 RtABC 先绕点 C 顺时针旋转 90,再向右平移 3 个单位长度, 则变换后点 A 的对应点坐标是()A(2,2) B(1,2) C(1,2)D(2,1)【解答】解:点 C 的坐标为(1,0),AC=2,点 A 的坐标为(3,0),如图所示,将 RtABC 先绕点 C 顺时针旋转 90, 则点 A的坐标为(1,2),再向右平移 3 个单位长度,则变换后点 A的对应点坐标为(2,2), 故选:A7. (2018临安8分)如图,OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将OAB折叠,使点A落在边OB上,记为A,折痕为EF(1)当AEx轴时,求点A和E的坐标;(2)当AEx轴,且抛物线y=x2+bx+c经过点A和E时,求抛物线与x轴的交点的坐标;(3)当点A在OB上运动,但不与点O、B重合时,能否使AEF成为直角三角形?若能,请求出此时点A的坐标;若不能,请你说明理由【分析】(1)当AEx轴时,AEO是直角三角形,可根据AOE的度数用OA表示出OE和AE,由于AE=AE,且AE+OE=OA=2+,由此可求出OA的长,也就能求出AE的长据此可求出A和E的坐标;(2)将A,E点的坐标代入抛物线中,即可求出其解析式进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:FAE=A,因此FAE不可能为直角,因此要使AEF成为直角三角形只有两种可能:AEF=90,根据折叠的性质,AEF=AEF=90,此时A与O重合,与题意不符,因此此种情况不成立AFE=90,同,可得出此种情况也不成立因此A不与O、B重合的情况下,AEF不可能成为直角三角形【解答】解:(1)由已知可得AOE=60,AE=AE,由AEx轴,得OAE是直角三角形,设A的坐标为(0,b),AE=AE=b,OE=2b,b+2b=2+,所以b=1,A、E的坐标分别是(0,1)与(,1)(2)因为A、E在抛物线上,所以,所以,函数关系式为y=x2+x+1,由x2+x+1=0,得x1=,x2=2,与x轴的两个交点坐标分别是(,0)与(,0)(3)不可能使AEF成为直角三角形FAE=FAE=60,若AEF成为直角三角形,只能是AEF=90或AFE=90若AEF=90,利用对称性,则AEF=90,A.E.A三点共线,O与A重合,与已知矛盾;同理若AFE=90也不可能,所以不能使AEF成为直角三角形【点评】本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强【点评】本题考查梯形的性质和旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等要注意旋转的三要素:定点为旋转中心;旋转方向;旋转角度8.(2018嘉兴12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。(1)概念理解:如图1,在中, ,.,试判断是否是“等高底”三角形,请说明理由.(2)问题探究:如图2, 是“等高底”三角形,是“等底”,作关于所在直线的对称图形得到,连结交直线于点.若点是的重心,求的值.(3)应用拓展: 如图3,已知,与之间的距离为2.“等高底”的“等底” 在直线上,点在直线上,有一边的长是的倍.将绕点按顺时针方向旋转得到,所在直线交于点.求的值.【答案】(1)证明见解析;(2)(3)的值为,2【解析】分析:(1)过点A作AD直线CB于点D,可以得到AD=BC=3,即可得到结论;(2)根据 ABC是“等高底”三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 村委代签补偿协议书范本
- 文化创意产业基地空地租赁与项目合作开发协议
- 申请商标签协议书范本
- 充电桩充电服务及能源供应合同
- 精细化仓储配送与供应链管理合同
- 茶园土地租赁与茶叶种植技术输出合同
- 知名快餐品牌区域代理权及店铺转让合同范本
- 产科医院护士标准聘用合同及母婴护理
- 餐饮品牌股权投资与转让合同
- 企业常年财务顾问与风险控制协议
- 西南大学马原试题及答案
- 2025年电大专科行政管理管理学基础试题及答案
- 2024中国中信金融资产管理股份有限公司北京市分公司招聘笔试参考题库附带答案详解
- 浙江省温州市瓯海区实验小学教育集团2025年小升初必考题数学检测卷含解析
- 2025年上半年四川省眉山青神县青神县事业单位考试招聘50人重点基础提升(共500题)附带答案详解
- 山东省第三届国学小名士题库(1600题含答案)
- 内镜室管理制度
- 消防泵房安全管理制度及操作规程
- 天津小卷试题及答案物理
- 2024北京朝阳区高二(下)期末英语试题和答案
- 胰十二指肠切除术后个案护理
评论
0/150
提交评论