




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
受迫振动的研究摘要: 振动是自然界中最常见的运动形式之一,由受迫振动引发的共振现象在日常生活和工程技术中极为普遍。它既有实用价值,也有破坏作用。表征受迫振动性质的是受迫振动的幅频和相频特性。本实验采用玻耳共振仪定量测定了阻尼振动的振幅比值,绘制了受迫振动的幅频特性和相频特性曲线,并分析了阻尼对振动的影响以及受迫振动的幅频特性和相频特性。实验中利用了频闪法来测定动态的物理量相位差,这是本实验的一大精妙之处。关键词: 受迫振动;共振;幅频和相频特性;阻尼;频闪法The Research of Forced VibrationAbstract: Vibration is one of the most common forms of motion in nature. The resonance phenomenon triggered by forced vibration is very general in our daily life and in engineering technology. It has both the utility value and destructive effect. The features of forced vibration are the phase-frequency characteristic and the magnitude-frequency characteristic. The experiment quantificationally measured the amplitude ratio of forced vibration and drawn curves of the phase-frequency characteristic and the magnitude-frequency characteristic by using the Bohr resonance instrument. Moreover, it analyzed the effect of damping on vibration and the characteristics of phase-frequency and magnitude-frequency. The stroboscopic method was used to measure the phase difference, which is ingenious.Key words: forced vibration; resonance; the characteristics of phase-frequency and magnitude-frequency; damping; stroboscopic method振动是自然界中最常见的运动形式之一,由受迫振动引发的共振现象在日常生活和工程技术中极为普遍。共振现象在许多领域有着广泛的应用,例如,众多电声器件需要利用共振原理设计制作;为研究物质的微观结构,常采用核共振方法。但是共振现象也有极大的破坏性,减震和防震是工程技术和科学研究的一项重要任务。表征受迫振动性质的是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。本实验采用玻耳共振仪定量测定了阻尼振动的振幅比值,绘制了受迫振动的幅频特性和相频特性曲线,并分析了阻尼对振动的影响以及受迫振动的幅频特性和相频特性。实验中利用了频闪法来测定动态的物理量相位差,这是本实验的一大精妙之处。1. 实验原理1.1 受迫振动物体在周期性外力的持续作用下进行的振动称为受迫振动。根据转动定理,有 (1)式中,为摆轮的转动惯量,为驱动力矩的幅值,为驱动力矩的角频率。令, , (2)则上式可写为: (3)式中为阻尼系数,为摆轮系统的固有频率。在小阻尼条件下,该方程的通解为: (4)此解表明摆轮的受迫振动包含两个分振动,第一项为阻尼振动,随时间的推移而逐渐消失,它反映了受迫振动的暂态行为,与驱动力无关;第二项表示与驱动力频率相同且振幅为的周期振动。可见,摆轮的受迫振动在开始时比较复杂,但经过不长的时间后,阻尼振动衰减到可以忽略不计,受迫振动达到稳定状态。这时,受迫振动变为简谐振动,有 (5).1.2 共振由极值条件可得出,当驱动力矩的角频率为时,受迫振动的振幅达到最大值,产生共振。共振时的角频率、振幅和相位差分别为: (6) (7) (8)由上式可以看出,阻尼系数越小,共振角频率越接近于系统的固有频率,共振振幅也越大,振动的角位移的相位滞后于驱动力矩的相位越接近于.1.3 阻尼系数的测量(1) 由振动系统做阻尼振动时的振幅比值求阻尼系数振动系统做阻尼振动时,对应的振动方程和方程的解为: (9) (10) (11)对相隔n个周期的两振幅之比取自然对数,则有: (12)可利用上式求出值,其中n为阻尼振动的周期数,为计时开始时振动的振幅,为第n次振动时的振幅,T为阻尼振动的周期。(2) 由受迫振动系统的幅频特性曲线求阻尼系数(只适合于弱阻尼情况)由幅频特性可以看出,弱阻尼情况下,共振峰附近 , 由此可得: (13)当时,由上式可解得: (14)在幅频特性曲线上可直接读出处对应的两个横坐标和,从而可得 (15)1.4 频闪法测量相位差要测量出振动系统的相频特性,必须在稳定受迫振动下测量出摆轮振动的角位移与驱动力矩之间的相位差. 共振仪的机电系统使得仪器实现了在稳定振动的状态下,摆轮上的长凹槽经过光电门的时刻,转盘上的指针所指的角度即为相位差,但共振仪工作时转盘旋转很快,实验者难以读出此时刻的值。因此采用频闪法实现对相位差的测量。仪器配置了一个闪光灯,闪光信号受光电门的控制,每当摆轮上的长凹槽经过光电门时,下光电管产生的光电脉冲可以触发闪光灯。借助于闪光瞬间,转盘上的强反光指针被照亮,由于人眼的视觉暂留作用,光指针所在处的角度值就可以方便地读出。该显示读数的方法称为频闪法。共振仪在受迫振动达到稳定后,闪光频率是转盘旋转频率的两倍,这与转盘的同一直径上的两个光指针相匹配,所以在闪光灯照射下,看起来光指针会好像一直停留在同一位置上显示值。2. 实验仪器玻耳共振仪简介 本实验使用的玻耳共振仪由共振仪和控制仪两部分组成,并用电缆互联。共振仪部分的结构如下图所示:图1 玻耳共振仪的共振仪部分1. 光电门;2. 长凹槽;3. 短凹槽;4. 铜质摆轮;5. 摇杆;6. 蜗卷弹簧;7. 支承架;8. 阻尼线;9. 连杆;10. 摇杆调节螺丝;11. 光电门;12. 角度盘;13. 有机玻璃转盘;14. 底座;15. 外端夹持螺钉振动系统由铜质圆形摆轮A与弹簧B构成,弹簧的一端固定在机架支柱上,另一端与摆轮轴相联,在弹簧弹性力作用下,摆轮可绕轴自由往复振动。外激励是由转速十分稳定的可调电机的偏心轴通过连杆和摆杆加到振动系统上。当电机匀速转动时,可看作是一种简谐激励。若改变电机转速,就相当于改变激励的周期。电磁阻尼由阻尼线圈产生,调节线圈电流可以改变电磁铁气隙中磁场,以达到改变阻尼力矩的作用。角度读数盘上方处也装有光电门,与控制电路相连接,可以用来测量强迫力矩的周期。共振仪部分的结构如下图所示:图2 玻耳共振仪的控制仪前面板左边是振幅显示窗,显示三位数字的摆轮振幅;右边时间显示窗,显示5位数字振动周期,精度为10-3s。“摆轮、强迫力”和“周期选择”开关,分别用来测量摆轮强迫力矩的1次或者10次周期所需的时间。电机转速调节旋钮用来改变强迫力周期,它是通过精确改变电机转速来达到,其精度仅供参考。阻尼选择开关用来改变阻尼线圈直流电位的大小,实验时选何档量程位置根据实际情况而定,“5”阻尼最大,“0”最小,一般避免置于“0”位置。电机开关用来控制电机转动,当测量阻尼系数和摆轮固有频率与振幅关系时,电机开关处于断状态。3. 实验内容、结果和讨论3.1 测量自由振动时摆轮振幅与振动频率的对应关系3.1.1 实验内容(1) 将电机有机玻璃转盘白线转到水平位置,以使摆轮白线居中。(2) 按下电源开关,阅读屏幕所显示的按键说明。按“确认”键,进入系统模式选择,选中“联网模式”,确认。系统进入“实验步骤”菜单,选中“自由振荡”,确认。系统进入自由振荡(阻尼0)待测状态。(3) 用手将摆轮拨转接近半圈(接近180度),松手,摆轮作自由振动,紧接着按键,使系统进入自动测量状态。待自动测量结束后,查询记录数据。3.1.2 实验结果及分析测量所得的实验数据如下表所示:表1 自由振动时摆轮振幅与振动频率的对应关系振幅/()周期T0/s振幅/()周期T0/s1561.5701001.5691541.570981.5691531.570941.5691501.570931.5691481.570921.5691291.569881.5691281.570861.5691261.569841.5691251.570831.5691241.569821.5691061.569781.5691041.569771.5691011.569761.5693.2 测量阻尼振动时的振幅比值,并求阻尼系数3.2.1 实验内容(1) 将系统返回“实验步骤”菜单,选中“阻尼振荡”,确认。系统进入“阻尼选择”菜单,选中“阻尼1”,确认。系统进入阻尼振动(阻尼1)待测状态。(2) 用手将摆轮拨转接近半圈(接近180度),松手,摆轮作自由振动,紧接着按键,使系统进入自动测量状态。待自动测量结束后,查询记录数据。3.2.2 实验结果及分析(1) 测量所得的实验数据如下表所示:表2 阻尼振动时的振幅比值的原始数据表摆轮振幅/()振动周期T10/s摆轮振幅/()振动周期T10/s14415.7009615.70013415.7008915.70012315.7008215.70011415.7007615.70010515.7007015.700(2) 对原始数据进行处理,如下表所示:表3 阻尼振动时的振幅比值的数据处理表摆轮振幅/()ln(i/i+5)=5T01445960.4055 11346890.4092 21237820.4055 31148760.4055 41059700.4055 平均值0.4062 10T=15.700sT=1.5700s=ln(i/i+5)/5T=0.4062/(51.5700)=0.0518 S-13.3 测定受迫振动时的幅频特性和相频特性,并求阻尼系数 3.3.1 实验内容(1) 将系统返回“实验步骤”菜单,选中“强迫振荡”,确认。系统进入受迫振动待测状态,打开电机,摆轮作受迫振动。(2) 等待摆轮周期与电机周期基本一致,选中周期,将计时由一个周期变为十个周期,以提高测量精度。选中测量,系统进入受迫振动自动测量状态。(3) 待自动测量结束,记录相关数据。再按住闪光灯按钮,利用视觉暂留,从电机度盘上测量记录相位差。(4) 选中周期,将计时由十个周期退回一个周期,以便观察。微调强迫力周期电位器,改变电机转速,重复(2)(4)过程。测出另一组数据。(5) 反复重复(2)(4)过程,直到测出完整的幅频曲线和相频曲线。3.2.2 实验结果及分析(1) 测量所得的实验数据及相关处理如下表所示:表4 受迫振动时的幅频与相频特性实验数据摆轮振幅/()振动周期T10/s相位差查表1得T0/s-14715.109-163.51.5691.038 5715.226-159.01.5691.030 6415.280-156.51.5691.027 6815.313-154.51.5691.025 7515.362-151.01.5691.021 7915.385-149.51.5691.020 8515.418-146.51.5691.018 9015.439-144.51.5691.016 9615.464-142.01.5691.015 10015.482-139.51.5691.013 10715.506-136.51.5691.012 12815.584-123.51.5701.007 14115.631-112.01.5701.004 14815.664-103.51.5701.002 15215.690-96.01.5701.001 15315.700-94.01.5701.000 15215.716-89.51.5700.999 15215.727-86.01.5700.998 15115.736-84.01.5700.998 15015.737-82.51.5700.998 14815.750-79.01.5700.997 14015.794-68.51.5700.994 13215.823-62.01.5700.992 11615.872-51.51.5690.989 9815.939-42.51.5690.984 8815.987-37.01.5690.981 8416.006-34.51.5690.980 7816.042-32.51.5690.978 6716.115-27.51.5690.974 6416.143-25.51.5690.972 5816.199-23.01.5690.969 5616.225-22.01.5690.967 (2) 根据表4数据,利用Origin Pro8绘制受迫振动系统的幅频和相频特性曲线如下图所示:图3 受迫振动系统的幅频和相频特性曲线 其中,图3中的曲线1为幅频特性曲线,其拟合的方程式如下表所示: 由此可得幅频特性曲线的方程为: y=53.88+95.97exp(-2) 由该方程可知: 当x=0.9991时,y取得最大值,且最大值为149.85。 那么,当y取149.85/=106时,解该方程式可得: x1=1.013 x2=0.9855 对应实际情况,即=1.013 =0.9855 根据公式 (15) 可得: = = (1.013 0.9855)1.569/2=0.0551 此外,图3中的曲线2为相频特性曲线,其拟合的方程式如下表所示: 由此可得相频特性曲线的方程为: 将幅频特性曲线上最高点处的横坐标x=0.99911代入该方程可得:y=-89.94。这说明固有频率与实际频率相同时发生共振,共振的位置在相位差约为-90度的地方。3.4 实验结果误差分析 本实验采用了两种方法来测量阻尼系数,其中由振动系统做阻尼振动时的振幅比值求出的阻尼系数为0.0518,由受迫振动系统的幅频特性曲线求出的阻尼系数为0.0551,两者之间存在一定的误差。对本实验结果影响较大的误差,主要来自固有频率的确定。实验原理部分认为弹性系数k为常数,它与扭转角度无关。但是实际上由于制造工艺及材料性能的影响,k会随角度改变略有微小变化,因而造成在不同振幅时系统的固有频率有变化。若取平均值,则在共振点附近,相位差的理论值与实验值相差很大。减小该误差的方法是测出振幅与固有频率的相应数值,将对应于某个振幅代入公式: ,从而使系数误差减少。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论