已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.2 不等式的性质,世界上所有的事物不等是绝对的,相等是相对的。过去我们已经接触过许多不等式的问题,本章我们将较系统地研究有关不等式的性质、证明、解法和应用.,1实数大小的基本性质,2做差比较法的基本步骤及要点,3. 初中学习的不等式的几个性质及同项异项不等式,同向不等式:两个不等号方向相同的不等式, 例如:ab,cd,是同向不等式.,异向不等式:两个不等号方向相反的不等式. 例如:ab,cd,是异向不等式.,复习回顾,作差变形(通分、因式分解、配方、根式有理化)定号结论。,探究:不等式的基本性质,性质1:如果ab,那么bb(对称性) 即:ab ba.,证明: ab a-b0 -(a-b)0 a-b0 ab,性质2:如果ab,且bc,那么ac(传递性) 即ab,bc ac,证明:根据两个正数之和仍为正数,得,注:不等式的传递性可以推广到n个的情形,性质3:如果ab,那么a+cb+c 即ab a+cb+c(可加性),证明:(a+c)-(b+c)=a-b0, a+cb+c.,推论1:不等式中任何一项改变符号后,可以把它从边移到另一边(移项法则) 如果a+bc,那么 ac-b 即a+bc ac-b,推论2:如果ab,且cd,那么 a+cb+d(相加法则) 即ab, cd a+cb+d,证明:ab, a+cb+c 又cd, b+cb+d. 由得a+cb+d,例1:已知ab,cb-d(相减法则),证明:ab,cb,-c-d. 根据性质3的推论2,得a+(-c)b+(-d), 即a-cb-d,性质4:如果ab,且c0,那么acbc; 如果ab,且c0,那么acbc.(可乘性), ab,c0 acbc. 证明:ac-bc= (a-b)c, ab, a-b0, 又c0,根据同号相乘得正, (a-b)c0 acbc。,推论1:如果ab0,且cd0,那么acbd。 (相乘法则),证明:由性质3得,思考感悟:,若ab0,cd,则acbd 成立吗?,证明:因为,根据性质4的推论1,得,证明:用反证法。 假定,,即,或,根据性质4的推论2和根式性质,得ab矛盾,因此,例2. 已知ab,ab0,求证:,分析:可用作差法也可用不等式的性质。 解法1: ab, b-a0 ,解法2:ab0,又ab,由不等式,的性质知,,即,思考:如果ab0呢?,探究点2 不等式的性质的应用,你还有其他证明方法吗?,证明:,还可以利用作差法.,课堂练习,练习:,不等式的基本性质总结,性质1:对称性 ab ba,性质2:传递性 ab,且bc ac,性质3:可加性 ab a+cb+c,推论1:移项法则 a+bc ac-b,推论2:相加法则 ab, cd a+cb+d,性质4:可乘性 ab,且c0 acbc ab,且c0acbc,推论1:相乘法则 ab 0,且cd0acbd,推论3:开方法则 ab0 (n N,n1),归纳小结:不等式的性质是不等式这一章内容的基础,是不等式证明和解不等式的主要依据,因此应特别重视,应熟练掌握和运用不等式的四大性质和五大推论。 不等式的证明过程是应用不等式对已知不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基建工程主管沟通协调技巧培训
- 2025福建省晋江圳源环境科技有限责任公司招聘25人备考题库含答案详解(研优卷)
- 2025安徽芜湖市南陵县县属国有企业招聘笔试准考证备考题库附答案详解
- 2025云南机场集团控股企业云南空港百事特商务有限公司招聘11人备考题库含答案详解(满分必刷)
- 2025山东泰山生力源集团股份有限公司招聘2人备考题库含答案详解(夺分金卷)
- 的家中保姆合同协议
- 电机外壳购销协议书
- 科研协作平台协议书
- 电梯维修免责协议书
- 2025云南卫通航空服务有限公司招聘1人备考题库及答案详解(名校卷)
- 韩妆技巧与形象塑造知到智慧树章节测试课后答案2024年秋临沂大学
- 肺栓塞的完整版课件
- 2025年度互联网项目投资分红协议书
- 【大学课件】金属材料的冲击实验
- 教育离职承诺书模板
- 厂房及宿舍楼工程施工组织设计方案
- 第5课 工业革命与工厂制度 课件-高二历史统编版(2019)选择性必修2经济与社会生活
- Unit 1 单元词汇精讲教学设计-2024-2025学年高一英语单元词汇精讲教学设计(人教版2019必修第二册)
- 江苏省沭阳县修远中学2024-2025学年高一生物上学期第二次月考试题
- DZ∕T 0213-2020 矿产地质勘查规范 石灰岩、水泥配料类(正式版)
- 医保异地备案委托书
评论
0/150
提交评论