




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷伊川县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如图,函数f(x)=Asin(2x+)(A0,|)的图象过点(0,),则f(x)的图象的一个对称中心是( )A(,0)B(,0)C(,0)D(,0)2 设M=x|2x2,N=y|0y2,函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )ABCD3 已知函数f(x)=ax1+logax在区间1,2上的最大值和最小值之和为a,则实数a为( )ABC2D44 某三棱锥的三视图如图所示,该三棱锥的表面积是 A、 B、 C、 D、 5 lgx,lgy,lgz成等差数列是由y2=zx成立的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件6 抛物线y=x2上的点到直线4x+3y8=0距离的最小值是( )ABCD37 半径R的半圆卷成一个圆锥,则它的体积为( )AR3BR3CR3DR38 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A11B11.5C12D12.59 直线2x+y+7=0的倾斜角为()A锐角B直角C钝角D不存在10函数f(x)=lnx+1的图象大致为( )ABCD11设偶函数f(x)满足f(x)=2x4(x0),则x|f(x2)0=( )Ax|x2或x4Bx|x0或x4Cx|x0或x6Dx|0x4 12在复平面内,复数所对应的点为,是虚数单位,则( )A B C D 二、填空题13如图,在平面直角坐标系xOy中,将直线y=与直线x=1及x轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V圆锥=()2dx=x3|=据此类推:将曲线y=x2与直线y=4所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=14如图:直三棱柱ABCABC的体积为V,点P、Q分别在侧棱AA和CC上,AP=CQ,则四棱锥BAPQC的体积为15【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是_.16数列 an中,a12,an1anc(c为常数),an的前10项和为S10200,则c_17【常熟中学2018届高三10月阶段性抽测(一)】已知函数,若曲线(为自然对数的底数)上存在点使得,则实数的取值范围为_.18如图,在棱长为1的正方体ABCDA1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为三、解答题19在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2: =1()在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;()射线=(0)与C1的异于极点的交点为A,与C2的交点为B,求|AB| 20设M是焦距为2的椭圆E: +=1(ab0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=(1)求椭圆E的方程;(2)已知椭圆E: +=1(ab0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标21在ABC中,cos2A3cos(B+C)1=0(1)求角A的大小;(2)若ABC的外接圆半径为1,试求该三角形面积的最大值22设函数f(x)=lnx+a(1x)()讨论:f(x)的单调性;()当f(x)有最大值,且最大值大于2a2时,求a的取值范围23设p:关于x的不等式ax1的解集是x|x0;q:函数的定义域为R若pq是真命题,pq是假命题,求实数a的取值范围24如图,点A是以线段BC为直径的圆O上一点,ADBC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P(1)求证:BF=EF;(2)求证:PA是圆O的切线伊川县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sin=,即sin=,由于|,解得:=,即有:f(x)=2sin(2x+)由2x+=k,kZ可解得:x=,kZ,故f(x)的图象的对称中心是:(,0),kZ当k=0时,f(x)的图象的对称中心是:(,0),故选:B【点评】本题主要考查由函数y=Asin(x+ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题2 【答案】B【解析】解:A项定义域为2,0,D项值域不是0,2,C项对任一x都有两个y与之对应,都不符故选B【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题3 【答案】A【解析】解:分两类讨论,过程如下:当a1时,函数y=ax1 和y=logax在1,2上都是增函数,f(x)=ax1+logax在1,2上递增,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,舍去;当0a1时,函数y=ax1 和y=logax在1,2上都是减函数,f(x)=ax1+logax在1,2上递减,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,符合题意;故选A4 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。利用垂直关系和三角形面积公式,可得:,因此该几何体表面积,故选B5 【答案】A【解析】解:lgx,lgy,lgz成等差数列,2lgy=lgxlgz,即y2=zx,充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题6 【答案】A【解析】解:由,得3x24x+8=0=(4)2438=800所以直线4x+3y8=0与抛物线y=x2无交点设与直线4x+3y8=0平行的直线为4x+3y+m=0联立,得3x24xm=0由=(4)243(m)=16+12m=0,得m=所以与直线4x+3y8=0平行且与抛物线y=x2相切的直线方程为4x+3y=0所以抛物线y=x2上的一点到直线4x+3y8=0的距离的最小值是=故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题7 【答案】A【解析】解:2r=R,所以r=,则h=,所以V=故选A8 【答案】C【解析】解:由题意,0.065+x0.1=0.5,所以x为2,所以由图可估计样本重量的中位数是12故选:C9 【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为,则tan=2,即可判断出结论【解答】解:设直线2x+y+7=0的倾斜角为,则tan=2,则为钝角故选:C10【答案】A【解析】解:f(x)=lnx+1,f(x)=,f(x)在(0,4)上单调递增,在(4,+)上单调递减;且f(4)=ln42+1=ln410;故选A【点评】本题考查了导数的综合应用及函数的图象的应用11【答案】D【解析】解:偶函数f(x)=2x4(x0),故它的图象关于y轴对称,且图象经过点(2,0)、(0,3),(2,0),故f(x2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x2)的图象经过点(0,0)、(2,3),(4,0),则由f(x2)0,可得 0x4,故选:D【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题12【答案】D 【解析】解析:本题考查复数的点的表示与复数的乘法运算,选D二、填空题13【答案】8 【解析】解:由题意旋转体的体积V=8,故答案为:8【点评】本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题14【答案】V【解析】【分析】四棱锥BAPQC的体积,底面面积是侧面ACCA的一半,B到侧面的距离是常数,求解即可【解答】解:由于四棱锥BAPQC的底面面积是侧面ACCA的一半,不妨把P移到A,Q移到C,所求四棱锥BAPQC的体积,转化为三棱锥AABC体积,就是:故答案为:15【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。16【答案】【解析】解析:由a12,an1anc,知数列an是以2为首项,公差为c的等差数列,由S10200得102c200,c4.答案:417【答案】【解析】结合函数的解析式:可得:,令y=0,解得:x=0,当x0时,y0,当x0,yy0,则f(f(y0)=f(c)f(y0)=cy0,不满足f(f(y0)=y0同理假设f(y0)=c0,g(x)在(0,e)单调递增,当x=e时取最大值,最大值为,当x0时,a-,a的取值范围.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号而解答本题(2)问时,关键是分离参数k,把所求问题转化为求函数的最小值问题(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f(x)0(或f(x)0)恒成立问题,从而构建不等式,要注意“”是否可以取到18【答案】 【解析】解:如图,将AM平移到B1E,NC平移到B1F,则EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=cosEB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题三、解答题19【答案】 【解析】解:()曲线为参数)可化为普通方程:(x1)2+y2=1,由可得曲线C1的极坐标方程为=2cos,曲线C2的极坐标方程为2(1+sin2)=2()射线与曲线C1的交点A的极径为,射线与曲线C2的交点B的极径满足,解得,所以 20【答案】 【解析】(1)解:设A(a,0),B(a,0),M(m,n),则+=1,即n2=b2,由k1k2=,即=,即有=,即为a2=2b2,又c2=a2b2=1,解得a2=2,b2=1即有椭圆E的方程为+y2=1;(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2),则两切线方程PC,PD分别为: +y1y=1, +y2y=1,由于P点在切线PC,PD上,故P(2,t)满足+y1y=1, +y2y=1,得:x1+y1t=1,x2+y2t=1,故C(x1,y1),D(x2,y2)均满足方程x+ty=1,即x+ty=1为CD的直线方程令y=0,则x=1,故CD过定点(1,0)【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力解题时要注意运算能力的培养21【答案】 【解析】(本题满分为12分)解:(1)cos2A3cos(B+C)1=02cos2A+3cosA2=0,2分解得:cosA=,或2(舍去),4分又0A,A=6分(2)a=2RsinA=,又a2=b2+c22bccosA=b2+c2bcbc,bc3,当且仅当b=c时取等号,SABC=bcsinA=bc,三角形面积的最大值为 22【答案】 【解析】解:()f(x)=lnx+a(1x)的定义域为(0,+),f(x)=a=,若a0,则f(x)0,函数f(x)在(0,+)上单调递增,若a0,则当x(0,)时,f(x)0,当x(,+)时,f(x)0,所以f(x)在(0,)上单调递增,在(,+)上单调递减,(),由()知,当a0时,f(x)在(0,+)上无最大值;当a0时,f(x)在x=取得最大值,最大值为f()=lna+a1,f()2a2,lna+a10,令g(a)=lna+a1,g(a)在(0,+)单调递增,g(1)=0,当0a1时,g(a)0,当a1时,g(a)0,a的取值范围为(0,1)【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题23【答案】 【解析】解:关于x的不等式ax1的解集是x|x0,0a1;故命题p为真时,0a1;函数的定义域为R,a,由复合命题真值表知:若pq是真命题,pq是假命题,则命题p、q一真一假,当p真q假时,则0a;当q真p假时,则a1,综上实数a的取值范围是(0,)1,+)24【答案】 【解析】证明:(1)BC是圆O的直径,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 唐山学院《高级商务英语(三)》2023-2024学年第一学期期末试卷
- 石家庄邮电职业技术学院《排水工程》2023-2024学年第一学期期末试卷
- 山西运城农业职业技术学院《户外运动医学基础》2023-2024学年第一学期期末试卷
- 呼和浩特民族学院《生物工程下游技术》2023-2024学年第一学期期末试卷
- 杭州师范大学钱江学院《基础医学实验技能教程》2023-2024学年第一学期期末试卷
- 重庆师范大学《幼儿歌曲伴奏与弹唱(二)》2023-2024学年第一学期期末试卷
- 江苏师范大学科文学院《生物医学信息与统计学》2023-2024学年第一学期期末试卷
- 山西职业技术学院《精神病学D》2023-2024学年第一学期期末试卷
- 天津工程职业技术学院《物流信息系统设计》2023-2024学年第一学期期末试卷
- 世界诗歌活动策划方案
- 医院医疗精神科危险物品管理PPT课件讲义
- 大气污染控制工程课程设计_某工厂布袋除尘器的设计
- 第二讲:黔东南州优势矿产资源
- 康复医院的设计要点精选
- 10kv高压架空电线防护方案概述
- 空调维保方案及报价(共3页)
- 石油化工管道施工方案
- 四川SG-008技术、经济签证核定单(共2页)
- 岗位分析及岗位职责富士康公司组织架构及部门职责
- 商品房销售代理合同
- 智能化建筑工程检验批质量验收记录文本表(共69页)
评论
0/150
提交评论